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ABSTRACT

Distributed Management by Delegation

Germ�an S. Goldszmidt

Network delays are becoming the most critical performance problem for distributed

applications. Traditional client server interactions do not scale well to environments

where those delays are relatively long. Elastic processes are executing programs that

can dynamically integrate new functionality sent from external processes as delegated

agents. Elastic applications overcome network delays by dynamically moving compu-

tations closer to the resources that they need to access. Delegated agents are written

in arbitrary programming languages, and their execution can be remotely controlled.

Elasticity de�nes an application-level interprocess exchange of code, dynamic loading

with multithreaded execution, and remote control. The elastic processing architecture

extends dynamic linking of delegated agents across remote computers.

Current network management systems follow a platform-centric, static soft-

ware paradigm that allocates most responsibilities to platform-based hosts, and leaves

network devices with minor service support roles. This paradigm results in ine�-

cient allocation of management responsibilities and intrinsically unreliable systems.

It forces management applications to micro-manage devices, and results in failure-

prone management bottlenecks, and limitations for real time responsiveness. The

dissertation presents a more exible management paradigm, namely Management by

Delegation (MbD). MbD permits programmable extensibility of network functions

to address rapidly changing network environments. It improves the reliability and

availability of networked systems by dynamically embedding in them the intelligence

required for autonomous self-management.
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1

Introduction

This dissertation introduces a novel technology for mobile agent computing,

elastic processing. A mobile agent is a program that is dynamically dispatched to,

and executed at, a remote site. For example, mobile agents can be dispatched to

(1) remote commerce servers to search for and book a vacation; (2) a remote TV

set-top box to program it to decode compressed video; (3) a remote network element,

such as a router or a switch, to control its operations. Many emerging networked

applications need such technologies to dynamically deploy software at distributed

computing devices.

Recent proposals for mobile agent technologies are based on specialized inter-

preted languages, like Java [Gosling and McGilton, 1995] or Telescript [White, 1994].

In these frameworks, an agent is a script that is dispatched to and executed at a

remote interpreter. In contrast, this dissertation introduces a language-independent

agent technology. Delegated agents can be coded in an arbitrary programming lan-

guage, compiled or interpreted. They are dispatched to remote elastic processes and

are dynamically linked with them and executed as threads under remote control.

Elastic processing o�ers signi�cant advantages over the above approaches.

First, it supports a much broader class of applications than language-based script-

ing agents. For example, scripted agents are not appropriate for handling real-time

computations such as video decoding. Second, it builds on existing general purpose

programming languages and their development support. Third, one can delegate an

entire interpreter to an elastic process and then delegate script agents to it. Therefore,

elastic processing can handle language-based agents as a specialized case.

This thesis also introduces a novel approach to managing networked systems,

using elastic processing. E�ective manageability of distributed systems is a critical

need for all modern organizations. A Network Management System handles prob-

lems related to the reliability, con�gurability, accountability, e�ciency, and security

of heterogeneous distributed computing environments. The practical handling and

resolution of many challenging technical problems fall under the aegis of network and

system management. Network management is concerned with monitoring, analysis

and control of network behaviors to assure smooth network operations.
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Operational data is collected by instrumentation of network elements and or-

ganized in Management Information Bases (mibs). For example, a router mib can

include counters for various tra�c statistics at the router ports. This operational

data is gathered by a centralized Network Management Station (nms) using a net-

work management protocol. The nms presents the data to operations sta� who are

responsible for monitoring, analyzing and controlling the network. This centralized

labor-intensive management paradigm does not scale for the size and complexity of

emerging networked systems. Hence, new technologies are needed to automate and

decentralize management functions.

Management-by-Delegation (mbd) is a novel network management paradigm

that applies elastic processing technologies to address many of the problems of cur-

rent network management systems. Management applications delegate mobile agents

to embedded elastic processes at network elements and domains. These delegated

programs automate the monitoring, analysis and control of network elements. For

example, delegated programs can monitor a large number of mib variables to detect

when a domain experiences problems. These agents can invoke delegated diagnostic

programs and then execute delegated policies to handle the problems. Management

responsibilities can thus be decentralized and automated.

1.1 Contributions

The thesis defended by this dissertation is that elastic processing addresses

many of the needs of emerging distributed environments, and, in particular, those of

network management systems. Some of the results presented in this dissertation have

been reported in the following articles [Goldszmidt et al., 1991; Yemini et al., 1991;

Goldszmidt and Yemini, 1991; Goldszmidt, 1992; Goldszmidt and Yemini, 1993;

Goldszmidt, 1993a; Goldszmidt, 1993b; Goldszmidt and Yemini, 1995]. The con-

tributions presented in this dissertation include:

� Elastic Processing, a novel model of distributed computing interaction. Elastic

processing includes (1) a Remote Delegation Service (rds) to dispatch agents to

a remote elastic process, invoke them as threads and control their execution, and

(2) a runtime architecture supporting dynamic linking, multithreaded execution,

authentication based security, and remote control of delegated agents.

� Management by Delegation, a novel framework for distributed network and

systems management. mbd dynamically distributes network management com-

putations to elastic servers at the network devices where the managed resources

are located. mbd is integrated within current management protocols like snmp.

� A formal model used to describe the behaviors of managed entities and their

observations by management applications. This model elucidates many of the

advantages of mbd over current network management paradigms. We design
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and implement a distributed management application to compress operational

data by computing health index functions.

� A new framework to support the dynamic de�nition of external data models

at the networked devices. It consists of a speci�cation language for views and

runtime extensions to the mbd-server. User de�ned views are applied to �lter

device data, execute relational operations, provide access control and atomic

semantics.

Chapter Organization

Section 1.2 outlines elastic processing with delegated agents.

Section 1.3 outlines network management issues.

Section 1.4 outlines Management by Delegation,

Section 1.5 briey outlines two management applications of mbd.

Section 1.6 presents a roadmap to the remaining chapters of this thesis.

1.2 Elastic Processing with Delegated Agents

An elastic process is a multithreaded process linked with the implementation

of an elastic runtime library. This is analogous to an rpc process which must be

linked to an appropriate rpc runtime library. The elastic-processing runtime library

supports multithreaded dynamic linking and loading of delegated agents, remote com-

munications with agent instances, and remote control of the agents' execution.

The program code and the process state of an elastic process can be modi�ed,

extended, and/or contracted during its execution. New agent code can be added

and instantiated as a thread inside an executing elastic process address space. These

changes, which are internal to the elastic process, result from an explicit interaction

with another process, namely remote delegation. The main action of remote delegation

is the transfer of an agent's code to an elastic process. Subsequent actions allow the

instantiation of an agent and control of its execution inside the elastic process.

The technologies developed to support elastic processing consist of a remote

delegation protocol service and a runtime architecture for elastic processes. Processes

use the Remote Delegation Service (rds) to con�gure and control elastic processes,

and to communicate with agents. A delegator process can instantiate, suspend, re-

sume, abort, and remove a delegated agent. We call the runtime environment of an

elastic process the \Delegation Backplane Middleware" (dbm). The dbm allows the

elastic process to be dynamically extended and contracted. dbm supports translation

and dynamic linking of delegated code, a multithreaded execution environment, and

internal and external communications.
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1.2.1 Elastic Processing has many Applications

Consider a laptop computer application to make reservations for a vacation,

including hotel, car, tours, and so forth. This application will support arbitrary

personal constraints which are de�ned by rules to ensure the best possible vacation

for a given budget. Assume that the relevant information is available at some remote

Web server. A non-elastic Web server allows its clients to retrieve information based

on prede�ned queries, e.g., using forms. However, the Web server could not have

prede�ned all the possible types of queries for each vacation. The application will

need to retrieve large amounts of data from the server, �lter it locally at the laptop

host, and then execute the booking transaction at the server.

This scheme is ine�cient, insecure and expensive. It is ine�cient since it

wastes cpu cycles of both client and server hosts. By the time the information has

been retrieved and �ltered, it may no longer be relevant, e.g., the hotel room may

have been taken. It is insecure because the servers expose the client to a lot of data

which the data owners may prefer to keep private for competitive business reasons.

If this transaction is being performed over a wireless or long-distance phone line, the

cost of the data exchange is expensive.

An alternative solution is to dispatch delegated agents to an elastic Web server.

The delegated agent will contain all the speci�c rules and constraints for a particular

transaction. Such an agent could be delegated to servers from di�erent organizations,

prompting them to compete on real time. Using delegated agents, applications can

reduce their consumption of resources, e.g., network delays and expenses are avoided

by reducing the transfer of unnecessary data. Thus, elastic processing can be used to

improve the performance of applications that execute in computer hosts with insu�-

cient computing resources or low bandwidth networks. Section 2.6 describes the use

of elastic processing to extend executing applications dynamically, support interoper-

ability via application gateways, adapt to varying computational resource availability,

and upgrade, customize, and monitor executing software.

1.2.2 Elasticity Presents E�cient Performance Tradeo�s

Most distributed applications and systems are organized following a Client-

Server (C/S) interaction paradigm. For instance, many distributed applications are

implemented using rpc. The traditional C/S paradigm does not perform well in

environments where network delays are relatively large. As computer processors get

increasingly faster, distributed applications processes will spend an increasingly larger

portion of their cycles idle-waiting for remote interactions. Network latency will then

become the most signi�cant bottleneck for distributed applications. Network latency

is primarily bound by the network's topology, its routing mechanisms, and applica-

tion quality of service requirements. Even if all of these could be optimized, there

would still be the fundamental barrier of the speed of light on the transfer medium.

Elasticity is an \inverse-caching" solution to the network latency bottleneck, i.e., is

moving application code closer to the location of its data. Distributed applications
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Figure 1.1: Delegating Mobile Agents to an Elastic Server

use delegated agents to reduce the number of remote C/S interactions.

Elastic processing supports and extends alternative distributed programming

models such as rpc. For example, an application can use rds to extend the services

of an elastic server process. Consider the following C code fragment that contains a

sequence of rpc calls to a remote �le server:

while (i=0;i<n;i++){

rpc-get-info (&r);

rpc-combine(p, r)

}

A process can delegate this code fragment and install it as a new procedure in the

elastic server. Thus a code fragment that required 2n rpc invocations can be per-

formed with only one remote interaction. Figure 1.1 shows a process, D, delegating

an agent, DA, to an elastic server process, ES. After ES dynamically links the code

of DA it can be invoked by D and other remote clients. Thus an elastic server process

can adapt to provide its clients with dynamic extensions of its functionality.

Implementations of Elastic Processing

We implemented the �rst elastic process prototype as an extensible server for

management applications [Goldszmidt et al., 1991]. This initial application included

a multithreaded server and several clients. System Management Arts implemented an

enhanced product version, the SMARTS Operations Server (SOS) [Dupuy, 1995].

1.2.3 Related Work

Distributed applications are designed and implemented following diverse re-

mote communication models. Examples of implementations of these models include

several \remote-" pre�xed mechanisms, such as Remote Procedure Call (rpc), re-

mote execution, remote evaluation, and remote scripting. Section 2.7 compares these
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models with remote delegation to elastic processes. The following paragraphs outline

some of the aforementioned comparisons.

Comparison with rpc

One of the most popular distributed application programming mechanisms is

rpc. rpc server designers must predict and code the entire range of services for which

a particular server may be invoked. For many distributed applications, however, it is

typically not possible to predict at application design time all the possible scenarios

in which a server can be involved. The de�nition and binding of a delegated agent

procedure can be done at the latest possible moment, just before its use.

Sometimes the invocation of a server's procedure should be tied to events that

are not under the client's control. For instance, the occurrence of an alarm in a

device should trigger the execution of a server procedure to handle it. Using an rpc

mechanism would block the client until the occurrence of such an event and then

until the completion of the rpc. In contrast, the execution of a delegated agent in an

elastic server can be triggered by independent event occurrences in the server's host,

asynchronously with the client's execution.

Remote Scripting with Agents

Several programming languages have recently been proposed to write scripting

or mobile agents. Examples of these languages are Java [Gosling and McGilton, 1995],

Safe-TCL [Borenstein, 1994], and Telescript [White, 1994]. Section 2.7.4 describes

these technologies, and Section 2.7.5 presents a more detailed comparison with the

work presented here. A detailed taxonomy is presented in Table 2.1. The following

paragraphs briey outline some of their di�erences.

The above scripting technologies are language-based mechanisms. rds is a

generic, language neutral mechanism for dynamically extending processes under re-

mote control. Delegated agents have been written in several languages. An elastic

process can be dynamically extended with a new interpreter for a scripting program-

ming language. The process will then be able to accept delegated agents written

in that language. Delegated agents can be compiled or interpreted, while remote

scripting agents are always interpreted. Many tasks cannot be e�ectively handled by

safe interpreted languages. For instance, Telescript agents cannot directly examine

or modify the physical resources of the computers on which they execute. Similar re-

strictions apply to other \safe" languages, like Safe-TCL and Java. These limitations

all but eliminate these languages as potential technologies for the many applications

which require such facilities. Delegated agents can execute as threads with explicit

access to the underlying physical resources.

Elastic processes permit explicit remote control of the execution of delegated

agents to authorized parties. Script interpreters do not provide explicit support for

remote control of their scripts. Remote evaluation and scripting combine code transfer

and its execution in one action. Elastic processing separates them into independent
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actions. Thus rds provides a �ne granularity of access control to delegated agents

and the threads instantiated from them.

Elastic processes can be con�gured and customized to support arbitrary secu-

rity and safety policies. Remote scripting technologies typically enforce a pre-de�ned

\one-size-�ts-all" security policy. Some remote scripting languages require a reliable

transport connection to exchange agents, e.g., Telescript. rds can execute over both

reliable (tcp) and unreliable (udp) transport protocols. This is very important for

many distributed applications, and in particular for network management. For in-

stance, a network fault diagnosis application should not rely on functioning transport

connections.

1.3 Network Operations and Management

Network administrators and operators that manage large distributed systems

need automated tools to maintain seemly operating networks. Before 1990, most

available management tools were used in an ad-hoc fashion. At the time, the few

generic tools available provided very basic functions. For instance, operators used

traceroute [Jacobson, 1988] to track the route that ip packets follow or to �nd a

\miscreant" gateway that is discarding some packets. Some networks supported more

sophisticated, but proprietary, management tools.

As networks grew in size and became more complex, their operational costs

increased substantially. Network operators had to become adept at handling non-

amenable problems in real-time for an ever growing melange of devices. Yet most

useful tools were vendor-speci�c and supported only a certain class of devices. The

increased complexity of operations created a demand for common, vendor-neutral,

interoperable, and integrated solutions. Standards organizations ameliorated this

situation by providing management interoperability frameworks such as the ietf's

snmp [Case et al., 1990] and the iso's cmip [ISO, 1990a].

Network Management Goals

Network management aims include the detection and handling of faults (e.g.,

network cleavages), performance ine�ciencies (e.g., high latency delays), and security

compromises (e.g., unauthorized access). To accomplish these goals, management

applications do the following:

� Collect real time data from network elements, such as routers, switches, and

workstations. For example, they collect the number of packets handled by the

given interface of a router.

� Interpret and analyze the data collected. For instance, they may recognize

security events, such as repeated illegal attempts to login on a workstation.

� Present this information to authorized network operators, possibly by displaying

a map of current tra�c.
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� Proactively react, in real time, to management problems, possibly by disabling

a link that is experiencing faults.

These activities are organized in accordance with guidelines established by network

management standards. See Appendix A for a more detailed overview and critical

analysis of network management standards.

1.3.1 Components of a Network Management System

Network management components are classi�ed into platform managers and

device servers or \agents"1. Figure 1.2 shows a diagram of the organization of a

typical network management system. It consists of a management station with a

console for the operators, and management \agents" (device servers) embedded in

network elements. The management station and operators are located at the Network

Operating Center, noc. Applications in the management station assume a manager

role. Typically, an \umbrella" application provides a Graphical User Interface (GUI)

that integrates the management applications for the network operators.

These applications execute concomitantly with the GUI to perform speci�c

management functions, e.g., accounting or security. Device servers are software pro-

cesses embedded within each manageable network entity. These servers collect device

data in Management Information Bases (mibs) and support a management protocol.

For instance, an snmp-agent is a device server that implements an snmp mib and

responds to snmp requests.

Manager applications use a management protocol to exchange data to and

from an mib. For example, an snmp-agent within a router collects information about

network tra�c and routing tables and organizes it in an snmp mib. A management

application in the platform can retrieve this data using the snmp Get command.

The retrieved data is then �ltered and displayed graphically on a network tra�c

map. A manager application can also use snmp to perform control operations over

a networked device. For example, the application can use snmp's Set to modify the

value of an mib variable to 0. The device server at the device can be programmed to

recognize this action as a request to reboot the device.

SNMP Allocates Most Processing to the NOC Hosts

The proper allocation of responsibilities between the centralized management

platforms and the network elements is critical for accomplishing e�ective manageabil-

ity. Current network management systems follow a platform-centric framework that

allocates most responsibilities to the management applications executing at the noc

platform. Mostly menial tasks are performed by the device servers, e.g., snmp-agents.

1Unfortunately, the network management community uses the term \agent" to refer to a device

server. This management \agent" is a stationary server process that supports a network management

protocol and performs certain tasks. We will either use the term device server or qualify the name,

e.g., snmp-agent, to avoid confusing them with delegated agents.
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Figure 1.2: Components of a Network Management System

The explicit assumption is that network elements cannot a�ord to be \intelligent",

but must rely on the centralized smarts of the platform-based applications. The

snmp framework, for instance, assumes that network devices have limited comput-

ing resources available, and hence snmp-agents should only perform a minimal set of

duties.

Management applications are implemented following a traditional C/S model

The service interfaces and the structure of mibs are strictly de�ned by standards.

The implementations of these processes are statically compiled and linked. A client

process in a manager role can only invoke a �xed set of prede�ned services. This

set cannot be modi�ed or expanded without the recompilation, reinstallation, and

reinstantiation of the server process. This rigid division of functionality hinders the

development of e�ective management systems.

1.3.2 Centralization Induces Performance Limitations

Platform-centric management systems establish several barriers to e�ective

management. A few problems are briey outlined in the following paragraphs, and

are examined in more depth and illustrated with detailed examples in Section 3.5.

Chapter 3 presents mbd, an architectural framework for management applications

that addresses these limitations. Chapters 4 and 5 present management applications

that demonstrate how to take advantage of mbd to overcome these problems. The

following examples are taken from the realm of network and systems management.

Note, however, that they are instances of generic problems that apply to many other

types of distributed systems and applications.
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Centralized Network Management does not Scale

The rigid allocation of management functions and responsibilities leads to

many problems of scale. In the platform-centric paradigm, a manager process at

the noc interacts with a large number of rigid servers at the network elements. This

interaction pattern allocates most processing to the platform's host computers. Thus

it entails a high degree of communication exchanges that involve a single point of

failure, the manager's host. This host processor establishes fundamental scale bound-

aries. For example, there is a limit on how many variables can be polled by a central

platform and how often. Data analysis and presentation is only conducted at the

central platform. Thus it requires high data access and processing rates that do not

scale up for large and complex networks.

Platform-centric Network Management induces Micro-management

For most non-trivial tasks, platform management applications need to micro-

manage the device servers. Platform managers can only interact with the device

servers through general purpose interfaces. For instance, they can only invoke Get,

Get-Next, or Set services from an snmp-agent. Non-trivial management tasks re-

quire a large number of platform-device interactions using these generic services.

Many interactions result in high communication costs and delays in responding to

critical situations. Relatively large amounts of resources, such as communication

bandwidth and cpu cycles, are required to accomplish even simple tasks. This high

overhead can place severe restrictions on manageability, barring all but trivial tasks.

A more detailed example of micromanagement is presented in Section 3.0.2.

Platform-centric Applications are Unreliable

Platform-centric management produces failure-prone communication bottle-

necks. During failure times in particular, centralized management will tend to increase

the rates of data access at a time when the network is least capable of handling them.

Since the platform host contains most management functions, it is rendered most

vulnerable to network failures. If the platform host is down or overloaded, devices

cannot accomplish recovery, as they must wait for instructions from the manager.

Thus, even a minor problem may potentially lead to an avalanche failure of the entire

network management system, bringing it to a complete halt. Hence, the platform-

centered approach is signi�cantly limited in its ability to handle the problems that

arise in complex, large-scale internets.

Platform-centric Management Imposes Resource Constraints

The type and quantity of resources available for management purposes vary

greatly among networked devices. Small devices, e.g., modems, will typically o�er

very limited computational capabilities for management purposes. A telecommuni-

cations switch or router can typically a�ord much larger computing resources for
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management. Some mobile devices may have limited computing resources available

due to their limitations in power consumption and storage. In addition to these in-

trinsic limitations, administrative policies may impose additional restrictions on the

allocation of management resources. For instance, a security policy may prescribe the

use of strong encryption on devices depending on their geographical location. Cur-

rent management standards lack any e�ective mechanism to di�erentiate between and

take advantage of the capabilities of di�erent types of devices.

1.4 Management by Delegation to Elastic Servers

Management by Delegation is the application of elastic processing to network

and system management. mbd device servers are elastic processes that implement

network management functions. The approach of mbd is to dynamically distribute the

management computations to mbd-servers at the devices where the managed resources

are located. An mbd-server is an elastic process customized for network management

and provides e�cient bindings to management instrumentation and support for snmp

interoperability. For instance, an mbd-server can implement an extensible snmp-

agent, as shown in Figure 1.3. Delegated agents are sent to mbd-servers to automate

the monitoring, analysis, and control of their networked elements. For example, an

operations management center can delegate management functions to an mbd-server

at a switch, programming it to execute certain tests at a given time.

Instead of bringing data from the devices to platform based applications, parts

of the management applications themselves are delegated to the devices. For exam-

ple, a manager host can be relieved from polling by delegating agents to the net-

work switches to monitor and detect network failures. The switches can invoke other

delegated programs to isolate and handle a speci�c failure. Similarly, manager ap-

plications can use delegated agents to detect and prevent intrusion attempts. Such

security management functions presently require operators to manually monitor and

analyze remote network accesses.

We present the design and proof-of-concept implementation of technologies to
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support mbd. We compare and contrast the applicability of both centralized and

distributed management paradigms for di�erent types of management applications.

Several management applications demonstrate the advantages of mbd over alterna-

tive paradigms. Chapter 4 describes \health" functions for compressing real time

operational device data and making distributed management decisions. Chapter 5

describes external level views that dynamically extend an mib. Implementing these

functions with delegated agents overcomes most of the obstacles presented by alter-

native platform-centric systems.

1.4.1 mbd Advantages over Current Systems

mbd supports the dynamic distribution of network management responsibili-

ties. Applications can use mbd to overcome many of the de�ciencies of centralized

network management systems. The following are some of the bene�ts of using mbd

to implement management applications:

Dynamic Allocation of Functionality

mbd allows applications to dynamically distribute management software to

the devices. Thus, it allows them to extend their management functionality as the

network and its administrative requirements evolve. mbd applications can dynami-

cally adapt to changes in the availability of network and computing resources. For

instance, when an ethernet segment is overloaded during �le systems backups, man-

agement applications can delegate agents that analyze data locally, and relieve the

network from the polling overhead. mbd applications can take advantage of newly

available resources. Networked devices are increasingly being equipped with sub-

stantial computational resources, including fast cpus and large memories. It is cost

e�ective to dynamically move more functionality to these less expensive devices.

Real-Time Interactions and Autonomy

mbd can dynamically control the granularity of the network interactions be-

tween the applications executing at the platform and the networked devices. Thus,

mbd applications can avoid the micro-management problem. mbd applications can

perform real time computations on operational data at the devices. Thus, mbd ap-

plications can react faster to device problems, and signi�cantly reduce the network

overhead and the inaccuracies due to polling. mbd-servers can improve the auton-

omy and reliability of many management applications. For instance, assume that

a network is going to be partitioned for a few hours. A noc application may del-

egate agents to execute critical management code at the devices while there is no

connectivity to the central platform.
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1.4.2 Development of Management Applications

The semantic heterogeneity of mibs complicates the development of manage-

ment applications. Standard management protocols like snmp unify the syntax of

managed data, e.g., a mib variable can be an integer counter of ethernet frames. How-

ever, these standards do not unify the semantics of the managed data. The method

that implements each mib variable can be implemented in substantially di�erent ways.

mibs allow substantial semantic variations and di�erences in the implementation-

speci�c behaviors of devices. For instance, routers from di�erent vendors are often so

di�erent that manager applications must use vendor-speci�c private mibs to handle

them.

The semantic heterogeneity of managed data complicates the development of

generic management software. In the absence of such software, platform-centered

management is reduced to core-dumping cryptic device data on operators' screens,

i.e., \mib browsers". mib browsing is not an adequate model for managing networks,

as there are very few adept operators able to decipher and interpret mib contents. In-

deed, most small organizations can not a�ord to hire the experts required to interpret

this data.

mbd provides a development platform that simpli�es the handling of semantic

heterogeneity across devices. Delegated agents can be designed to handle the speci�c

operational environment and distinct features of a speci�c device. Such agents can

give the platform a higher level management view that hides many private device

details. Network engineers can leverage their expertise by designing new agents that

incrementally improve the overall management system. Thus, mbd provides an ef-

fective environment to proactively manage networked systems of arbitrary scale and

complexity.

Integration with Standards

mbd-servers inter-operate with standard management protocols like snmp.

Thus, mbd-servers andmbd applications can be fully integrated within existing platform-

centric management systems. Standard management applications can also reap many

of its bene�ts, e.g., by accessing the computations of delegated agents via snmp.

1.5 mbd Applications

mbd provides an environment for dynamically deploying network management

application code. Delegating agents can help automate a larger portion of network

management tasks, reducing the need for extensive human intervention in the man-

agement loop. The following sections outline two mbd applications that demonstrate

this capability. An extended discussion of these applications is presented in Chapters

4 and 5.
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1.5.1 Compressing Management Information

Management applications need to accomplish management decisions based on

observations of the network behavior. Because of the huge volume of data that

characterizes the network behavior, management applications must compress real-

time monitoring data at the devices. Platform-centric network management systems

cannot compute many real-time management functions e�ectively. This is due to the

\probe-e�ect" introduced by polling over the network. To enable e�ective decision-

making, vast amounts of real-time operational data need to be compressed at their

source.

Section 4.2 introduces a formal model of sample behaviors and observations

of network elements. This model elucidates many of the shortcomings of current

network management paradigms. In particular, we examine the observations of man-

aged entities that are computed by snmp mibs, and characterize their problems and

limitations. Their static approach to collecting management data wastes computing

resources. Management applications that use snmp to retrieve these values su�er

from the inaccuracies that are introduced by snmp polling.

Index Functions for Compressing Management Data

One method of compressing operational data is to compute index functions,

reducing a large number of observed operational variables to a single indicator of the

system state. Such indexing uses linear aggregation of a large number of variables that

provide di�erent microscopic observations. Current network management paradigms,

however, do not support the temporal distribution and spatial decentralization re-

quired to compute real-time management functions e�ectively. Standard network

management approaches require a priori knowledge of what algorithms are mapped

into statically de�ned objects. Implementations of such observation operators must

take advantage of the spatial and temporal distribution of mbd. Management appli-

cations may use these operators to make real time decisions, e.g., to diagnose and

correct element failures.

Health Functions Provide an Index of the Network State

We de�ne \health" functions to provide e�cient real-time compression of man-

agement data. These functions linearly combine raw mib data into simple indexes

of the network state. A health function is useful for distributed decision making.

For instance, an application can program real-time reactions to a network emergency

based on trends identi�ed by a health index. mbd supports the exible and e�ective

evaluation of health functions and linear threshold decisions at the data sources.

mib objects are statically de�ned; that is, their algorithms are rigidly imple-

mented in each device server. Implementing an mib object requires prior knowledge

of the corresponding algorithm. Health functions, however, cannot be included as

part of a static mib, because they may vary from site to site and over time. noc



15

platform hosts can not compute them e�ectively, as this results in excessive polling

rates that will ood the network. Centralized polling misses the original goal of max-

imally compressing data at its source. Such centralized computations are inaccurate

because of data perturbations due to the probe-e�ect induced by polling.

1.5.2 Computation of mib Views

Management applications need to compute useful information from raw data

collected in mibs. Often such computations cannot be accomplished through remote

interactions between the application and snmp-agents. For example, suppose that

an application needs to perform some analysis on all the routing table entries of a

router. The application can use snmp requests to retrive the routing table entries,

one row at a time. This interaction, however, does not provide an atomic snapshot of

the routing table at a given time, which is needed for consistency analysis. Instead,

di�erent sections of the table as seen by the application will reect di�erent versions of

the routing table at di�erent times. Section 5.1 presents several additional examples

of such computations showing that this model of interaction is highly ine�cient and

unscalable.

A central di�culty in developing management applications is the need to bridge

the gap between two di�erent data models: The application's and the mib's. Standard

network management frameworks provide no support for management applications

to dynamically de�ne external data models as part of the mibs. Therefore, man-

agement applications are forced to retrieve large amounts of data to the platform to

perform simple operations like �ltering and joining mib tables. In a multi-manager

environment it is di�cult to ensure atomicity or transaction semantics of management

actions. Furthermore, platform-centric management does not assist applications in

sharing the results of these computations with other remote managers.

Chapter 5 presents a novel technique for dynamically extending mibs, support-

ing the computation of external level views. Views are delegated agents that allow

management applications to correlate and organize collections of data which may

not exist physically at the snmp-agent. Views implement several desirable functional

features which are di�cult to achieve under snmp such as data correlation, source

�ltering, and atomic snapshots. For example, the routing analysis application could

delegate views that take atomic snapshot of mib tables. It could then retrieve the

entries of these atomic snapshots using standard snmp get-next requests.

External-level management speci�cations are written in a special View De�ni-

tion Language (vdl). Network engineers use vdl agents to create virtual mib tables

which contain correlated data, to generate atomic snapshots of mib data, to establish

access control mechanisms, to select data which meet a �ltering condition, and to

execute atomic actions.



16

1.6 Thesis Roadmap

We begin each chapter with a brief description of the main challenges and

contributions presented in the chapter, followed by an outline of the chapter's sections.

Chapter 2 describes elastic processing with delegated agents. It motivates elastic

processing via examples, and describes rds and dbm. It discusses the per-

formance and security characteristics of elastic processing, and compares its

programming model with related work.

Chapter 3 outlines the mbd framework and describes how it integrates with other net-

work management systems. It characterizes the management applications that

can bene�t from mbd, and describes how mbd addresses the intrinsic problems

of platform-centered network management.

Chapter 4 introduces a model to describe management observations of the behaviors

of managed entities, and describes some of the problems associated with central-

ized polling. It shows how mbd can be used to compress real time management

data and perform management decisions.

Chapter 5 presents the mib Computations System, which consists of a language

to specify mib view computations and mbd service extensions that implement

them.

Chapter 6 summarizes the dissertation and draws some conclusions.

Appendix A provides a brief introduction to network management, describes its

functional areas and standards, and shows that it presents a broad range of

non-trivial technical challenges.
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2

The Elastic Processing Approach to

Mobile Agents

2.1 Introduction

Current distributed computing technologies support several modes of remote

interactions between executing programs or processes. Processes can access remote

�les using an explicit �le transfer protocol (e.g., ftp) or implicit �le server mecha-

nisms (e.g., NFS); they can invoke computations at remote servers by using specialized

transaction protocols or Remote Procedure Calls (rpc); they can exchange data with

each other using specialized messaging protocols or distributed programming language

constructs. These various modes share one feature in common: they all involve trans-

fer of data and/or commands among statically located processes. Data and commands

form the mobile parts of a computation while the programs are static.

There is a growing number of network computing scenarios which cannot be ef-

fectively addressed by such static interaction paradigms. We illustrate these scenarios

through several examples.

Example: Dynamic Interaction of Clients with Web Services

Consider an information provider that wishes to use a Web server to engage

users in interactive game programs. At present, these programs must execute on the

server and utilize HTML pages as the presentation media to the clients. This mecha-

nism is inadequate to engage users in fast interactions with rapidly changing graphics

over relatively slow communication links. Instead, the service provider requires a

mechanism to move the game programs from the server to the user's computer, link

them with the local browser software environment and execute them at the user's

machine. Such a transfer will be repeated as new game scenarios arise.
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Example: Usage Statistics of An ATM Switch

Consider an atm switch owned by an Internet Service Provider (ISP) that

serves several thousand users in a given community. From time to time the ISP

organization needs to process information about its switches, e.g., they may need

switch usage statistics for capacity planning purposes. An ISP administrator will

use a distributed application that retrieves data from all the switches and performs

statistical analysis of the retrieved data at a central host. Let us assume that a given

switch currently has some v Virtual Circuits (VCs), (e.g., v = 10000). The application

will typically follow a client/server interaction paradigm that requires O(v) exchanges

to collect all the per-VC data of each switch. This interaction paradigm is ine�cient,

since it wastes network bandwidth and platform host cpu cycles.

One may claim that it will be better to prede�ne such processing as a service

procedure of the switch, i.e., following an rpc model. However, each ISP will collect

di�erent statistics, depending on installation speci�c policies that evolve over time.

Even if it were possible to predict all the possible services that the switch should

provide, they would require the allocation of large computing resources (disk, mem-

ory) for services that are seldom used. Therefore, it is more e�cient to dynamically

extend the collection of services that the device provides.

Example: Monitoring News (changes) in Web Stores

Consider now a scientist who wishes to obtain reports of new information and

hyperlinks posted on the World Wide Web, that relate to a speci�c �eld. At present

this user must perform a distributed search for such information and retrieve all the

relevant Web pages. In many cases, the user will need to compare the retrieved

pages with previous versions to identify new information. This scheme is, of course,

ine�cient and mostly impractical. A more useful approach is to execute programs

at the servers that monitor and report changes in relevant information. Such news

reporting programs could be provided as a service by the server owners. However,

this would require standardization of these programs to permit a user to uniformly

monitor a large variety of servers. Alternatively, server owners can provide their

users with the ability to execute search programs to monitor, analyze and report

changes in server contents. Mechanisms are required to dispatch and execute such

news monitoring programs at remote servers.

2.1.1 Mobile Agents

We use the term mobile agent to describe a program that is dynamically dis-

patched to a remote host, where it is linked and executed. This de�nition includes

degenerate forms of agents such as postscript programs dispatched to a printer or

HTML scripts dispatched to a browser. In both cases the agent programs perform

limited specialized tasks. The above examples, as well as many more provided in this

dissertation, clearly establish the need for more general mobile agent technologies.



19

The possibilities provided by mobile agents computing have recently attracted enor-

mous interest. Indeed, several large companies1 have described such technologies as

central to their strategic vision of computing.

Challenges in Developing Mobile Agent Technologies

There are several challenges in developing e�ective mobile agents technologies.

First, one must establish mechanisms to dynamically dispatch programs to remote

hosts and link them with local resources that they must access. For example, a video

game agent dispatched to a remote browser, as in the �rst example, must be linked

with remote I/O resources and other game agents. Second, one must provide means

to control the execution of these remote programs. For example, the video game may

need to dispatch additional agents for di�erent phases of the game, and control their

execution following the game rules and remote interactions by other players.

Third, it is necessary to assure that mobile agents do not compromise the

resources of the remote host. The Web server providers, in the second example

above, need to protect access to server resources by news reporting agents. They must

ensure that these agents cannot damage server pages, assume control of OS resources,

or utilize excessive cpu cycles and/or memory to perform their functions. Fourth,

it is necessary to integrate mobile agent technologies within current heterogeneous

distributed computing mechanisms and environments. For instance, the video game

players may have very di�erent personal computers, in terms of type and amount of

available hardware (cpu, memory) and software (di�erent operating systems).

2.1.2 Language-Based vs Process-Based Agents

Several proposals for mobile agent technologies have been recently described

by various groups including Java [Gosling and McGilton, 1995], Telescript [White,

1994], and Safe-TCL [Borenstein, 1994]. These proposals share a fundamental com-

mon base: agents are program scripts written in the corresponding language that

are dispatched to a remote interpreter where they are executed. For example, Java

scripts are retrieved by a HotJava browser [Gosling, 1995] and executed by the Java

interpreter at the browser. One can script games and various other local interaction

loops in Java and provide these scripts as extensions of standard Web information

services. Java thus enables remote dynamic extensibility of Web browsers.

This thesis introduces a completely di�erent approach to mobile agents com-

puting, namely elastic processing. Elastic processing consists of two components:

� a Remote Delegation Service (rds) to dispatch an agent to a remote elastic

process, invoke it as a thread of the process, and control its execution.

� An elastic process structure to support dynamic delegation, linking and remote

control of agents.

1including Oracle, Sun and IBM
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For example, a video server provider can use rds to delegate an agent to

interact and play a game with the user and other remote players. Depending on the

rules of the game, additional agents are delegated, linked, and executed as threads

of an elastic process that provides controlled access to the user's personal computer.

Similarly, a news reporting agent can be dispatched, using rds, to remote Web sites

to monitor their server contents, detect changes and report them. The agent program

will be downloaded to the servers and executed whenever respective pages are modi�ed

or new pages are added.

Delegated agents and elastic processing o�er several advantages over language-

based scripting agent technologies. First, agents can be developed in compiled or

interpreted languages using current programming languages and development tools.

Compiled agents written in industrial-strength languages, e.g., C or C++, can be

used to perform real-time tasks or to construct complex systems well beyond what

is possible using agents scripted in an interpreted language. For example, one can

delegate an agent to a remote TV decoder to decompress and display a video stream

that uses a novel compression technology. Similarly, one can delegate agents that

support new protocol interfaces at a remote system and thereby extend its range of

interoperability.

Second, one can delegate an entire interpreter as an agent and then delegate

scripts to it. For example, one can delegate a TCL [Ousterhout, 1990] interpreter

to an information appliance, and then delegate and execute TCL script agents to

present information to users in interactive forms not supported by the Web. When

the interactions are completed the interpreter and script agents may be discarded,

saving resources for other types of computations. Thus, elastic processing provides

support for language-based scripting agents as a special case.

Third, elastic processes can extend standard O/S access control mechanisms

and apply them to accomplish secure agents. For instance, a delegated agent may

execute under a prede�ned userid (e.g., nobody) with very limited access to local

resources. Such a mechanism will allow a delegated game to interact with the PC's

screen and audio device, but will prevent it from accessing personal �les of the user.

Also, elastic processes may enforce authentication mechanisms which ensure that only

agents from reputable sources are accepted. For example, the games server may only

accept agents that have been �ngerprinted by the service provider.

Fourth, rds provides extensive execution control capabilities that permit ex-

ible models of agent control. For example, a delegated game agent may be dispatched

to the client host and then invoked periodically under local or remote scheduling

control. Depending on the game interactions, the agent can cause the delegation of

additional agents to the user's host and to the hosts of other players to pursue dif-

ferent game plans. The execution of these agents may be controlled by the remote

server in order to reect the game interactions of all the players.
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Chapter Organization

� Section 2.2 presents a few examples of non-elastic processes that illustrate the

problems that elastic processing addresses. It formally de�nes elastic processes,

and introduces rds.

� Section 2.3 presents the architecture of the Delegation Backplane Middleware

that implements the runtime of elastic processes.

� Section 2.4 outlines the security requirements of rds and presents a security

model for elastic processing.

� Section 2.5 analyzes the performance characteristics and tradeo�s of elastic

processing via a simple application example.

� Section 2.6 presents several examples of distributed applications that can ben-

e�t from elastic processing, and discusses the common characteristics of these

applications.

� Section 2.7 compares elasticity with other related work, including rpc, Remote

Execution, Remote Evaluation, and Remote Scripting.

� Section 2.8 presents conclusions.

2.2 What is Elastic Processing?

Consider again the atm switch example presented in Section 2.1. The applica-

tion engaged in a client-server interaction that was ine�cient, since it wasted network

bandwidth and platform host cpu cycles. An alternative approach is to distribute

the data processing computations to where the data is located. In this example,

the application could delegate the computation of the statistics to the switch itself,

thereby avoiding network delays.

Elastic Processing Supports Spatial and Temporal Distribution

The above example is representative of a large collection of emerging networked

applications that can take advantage of dynamic extensibility. Elastic Processing is a

novel distributed computing paradigm that supports dynamic extensibility of remote

software processes, i.e., it is both \spatial" and \temporal" distribution. Elastic pro-

cesses are executing programs that can dynamically integrate new functionality sent

to them from external processes as delegated agents. Elastic processing is language

independent and supports explicit remote control of agent's execution. The technolo-

gies that support remote elasticity consist of a Remote Delegation Service (rds) and

a multithreaded \Delegation Backplane Middleware" (dbm) architecture for elastic

processes.
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A delegated agent is a program code that is (1) dispatched to an elastic process

host, (2) translated and dynamically loaded, (3) executed as a thread inside the

address space of the elastic process, or as an independent process in the same host,

(4) controlled remotely by authorized parties. Thus, an external (local or remote)

process can dynamically extend the functionality of an elastic process, by delegating

an agent to it. Dispatching and executing an agent are two decoupled asynchronous

actions, that can be initiated by the sender or by the elastic process receiver.

rds provides applications the ability to (1) remotely con�gure an elastic pro-

cess, (2) control the execution of delegated agents, and (3) convey information to

and from these agents. The dbm runtime environment implements a software \back-

plane" where delegated programs are loaded and can execute as threads in a shared

address space. dbm supports translation and dynamic linking of delegated code, a

multithreaded execution environment, dynamic resource allocation, and interprocess

communications.

Elastic Processing Requirements

In this chapter we evaluate the requirements of distributed applications and

show the following:

� Network delays are increasingly becoming a major performance bottleneck for

many types of distributed applications. Elastic processing provides an e�ective

paradigm to overcome such network delays.

� Remote dynamic extensibility requires a security model that prevents its abuse

by unauthorized parties. We de�ne a language-independent, con�gurable secu-

rity model based on party authentication and controlled agent execution.

� Application programmers need to customize their distributed applications to

meet changing requirements. We present a collection of application examples

that can bene�t from elasticity, and outline their main characteristics.

2.2.1 Why Do We Need Elastic Processes?

This section presents two brief examples that illustrate some of the problems

addressed by elastic processing.

A Web Browser Process

NCSA Mosaic 2 is a hypertext browser program that implements a World Wide

Web rigid client. It has hard-wired knowledge about many di�erent �le formats (e.g.,

gif, html) and protocols (e.g., http, smtp, ftp). The browser uses this knowledge to

access remote information which is available at servers that provide data in an appro-

priate format and support a corresponding protocol. The browser can be statically

2See http://www.ncsa.uiuc.edu/SDG/Software/Mosaic/NCSAMosaicHome.html
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con�gured to invoke di�erent programs for each data type, as de�ned in a special

mapping con�guration �le. For instance, it is possible to con�gure the browser to

choose the xdvi program as the browser for all .dvi objects. This startup con�gura-

tion provides a limited degree of exibility in the application's behavior, but it does

not modify the browser process itself.

A speci�c implementation of the Mosaic browser can not handle protocols

that have not been rigidly de�ned within it. For example, Mosaic can not handle a

Universal Resource Locator (URL) like mynewprot://foreign.edu/obj1.mnp, if the

mynewprot protocol has not been prede�ned. In other words, the browser can only

access objects whose URL protocol is prede�ned, e.g., http, smtp, ftp. To support

a new protocol, say S-http, the implementation of the browser must be extended. If

the browser could be dynamically extended, new protocols could be added as needed.

HotJava [Gosling, 1995] is an example of an extensible client browser. We compare

their model with ours in Section 2.7.4.

An Rmtd Daemon Server Process

rmtd [Uni, 1986; Stevens, 1990] is a Unix \deamon" server that provides re-

mote �le access over magnetic tape drives. The rmtd process supports the following

service requests: open, close, lseek, write, read, ioctl, and status. For ex-

ample, a successful status request returns to the client a binary bu�er which contains

hardware-dependent information describing the current status of a tape drive.

rmtd clients are limited to selecting choices from a prede�ned set of services.

In order to customize distributed applications, program designers often have to add

signi�cant functionality to the client processes. For example, an rmt client needs to

convert and interpret the binary data returned by a status request, which varies

for each tape drive. This static allocation of functionality leads to a non-modular

and unscalable design. Each client process has to support multiple routines to com-

pensate for the lack of appropriate server functionality, in this case, to interpret the

device-dependent binary data. Shifting functionality to the clients complicates the

development, deployment and maintenance of distributed applications, as there are

typically many clients per server.

A tape drive device vendor could provide extensions to the server to support

additional functionality. For example, the designer of an alternative rmtd-like pro-

gram could add an additional service entry-point, e.g., status text. This additional

service could return a self explanatory ASCII string. Such extensions will have to be

compiled and linked with the rest of the original server code.

Executing clients may not want to be a�ected by such server changes. Particu-

larly, they may not want to become aware of the server upgrade by losing connections

with it or by other exceptional conditions. Upgrading a rigid server is likely to entail

installing a private copy of it. Keeping multiple copies of the server code requires

additional storage space. Then it becomes di�cult to upgrade, maintain, and man-

age each version of such program. The following section outlines some of the generic

problems of distributed computing with rigid processes.
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2.2.2 Formal De�nition

This section formally de�nes elastic processing. An elastic process is a multi-

threaded process that supports the remote invocation of a set of elastic transforma-

tions. These transformations allow remote processes to (1) extend the functionality of

the elastic process by delegating agents to it, (2) control the execution of the agents,

and (3) communicate with the agents.

A process � �< C; S >, consists of a program code C and a state S. For

example, a �le editor process that I am currently using is an executing incarnation of

the emacs program (C). The state (S) of this process includes the current contents of

several �les, personal customizations, and so forth. C is de�ned by a collection of code

program fragments that � can execute, C � fc1; c2; :::; cng. For my emacs process,

the ci include all the code in the main program executable, and all the imported

library routines that were explicitly and implicitly loaded into its address space. The

process state S is de�ned by the state of all its threads, S � fs1; s2; :::; smg, where
si =< ci; xi >. ci indicates the code associated with each thread, and xi its execution

state.

Note well that jCj = n 6= jSj = m, i.e., the number of threads is independent

of the number of program fragments. Consider, for instance, a multithreaded ap-

pointment server process, where a new thread is allocated for each appointment. The

state of each thread includes the program code that the thread executes for some type

of appointment transaction and the data associated with it. There may be several

appointment threads that share the same code but have di�erent states.

Elastic Transformations

An elastic process �E is de�ned by two dynamic sets C and S, which can be

modi�ed via elastic transformations. An elastic process supports the remote invoca-

tion of the following code extensibility and state control transformations.

Code Extensibility Transformations

Code Extensibility Transformations allow a remote process to extend or con-

tract the program code set, C, of an elastic process.

� An addition transformation incorporates a new code fragment, c into an exe-

cuting process, � =< C; S >.
Addition : f< C; S >; cg 7!< fC [ cg; S >

� A deletion transformation deletes a code fragment c from a process P , and may

implicitly remove any thread whose state is associated with the deleted code

fragment.

Deletion : f< C; S >; cg 7!< fC � cg; fS � fsi : si =< c; xi >gg >
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State Control Transformations

State Control Transformations allow a remote process to modify the state of

an elastic process.

� An instantiation incorporates a new thread to the state of an existing process.

Instantiation : f< C; S >; cg 7!< C; ffs1; :::; skg [ fsk+1 =< c;Run >gg >

� A termination removes a thread from an existing process.

Termination : f< C; S >; sjg 7!< C; S � sj >

� A suspension changes the state of an executing thread to suspended.

Suspension : fsj =< c; >g 7! fsj =< c; Sus >g

� A resumption changes the state of a suspended thread to executing.

Resumption : fsj =< c; Sus >g 7! fsj =< c;Run >g

Elastic Processes and Elastic Servers

An elastic process, �E, supports the remote invocation of the above six elastic

transformations. That is, the code and state of a �E can be remotely modi�ed,

during its execution, as a result of an explicit external interaction. An elastic process

is a generalization of dynamic linking to a distributed, multithreaded environment.

The Remote Delegation Service (rds), implements the elastic transformations, and

communications between process threads.

An elastic server is an elastic process whose service interfaces can be remotely

modi�ed. That is, the interface of the server is a dynamically changing collection

of service procedures, fp1; p2; � � � ; plg that can be remotely invoked by its clients.

New pi procedures can be added and existing procedures can be removed via remote

extensibility transformations.

2.2.3 Remote Delegation Service

rds enables processes to exchange agents and to control their execution. A

delegator process uses rds to transfer a Delegated Program (dp) to an elastic pro-

cess and to control its execution. An elastic process compiles and dynamically links

a delegated agent, and returns a handle to the delegator. dps are instantiated as

independent threads (dpis) in the address space of the elastic process. Instantiated

agents can establish bindings to exchange messages or to make remote calls. Elas-

tic processes implement the rds interfaces listed in �gure 2.1. rds enables remote

processes to:

� Transfer a delegated agent to an elastic process.

� Instantiate a delegated agent as a lightweight thread or full process.

� Suspend, resume, or terminate the execution of a delegated agent.
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RDS_Delegate(EP, DP, &DPid);

RDS_Delete(DPid);

RDS_Instantiate(DPid, &DPIid);

RDS_Terminate(DPIid);

RDS_Suspend(DPIid);

RDS_Resume(DPIid);

RDS_SendMsg(DPIid, Msg);

RDS_ReceiveMsg(&Msg);

Figure 2.1: rds Services

� Exchange messages with the delegated agents.

Figure 2.2 illustrates the use of these operations. The remote process delegator

is assumed to be authorized to perform the corresponding actions:

1. A dp is being delegated, using rds Delegate(EP, dp, &DPid), to an elastic

process EP.

2. The dp is compiled and dynamically linked with the elastic process address

space.

3. The delegator process executes rds Instantiate to create a dpi.

4. The delegator (and/or other processes) communicates with the dpis using rds SendMsg

and rds ReceiveMsg.

5. The delegator process can suspend and resume the execution of the dpi, using

rds Suspend and rds Resume.

6. The delegator aborts the execution of the dpi, using rds Terminate.

7. Finally, the delegator removes the dp using rds Delete.

Note that the entity invoking a rds service may be either remote or local (another

process in the same host, or another thread in the same process). We now examine

each of these services in more detail.

Delegation and Deletion of Agents

Using rds Delegate, a delegator process (�D) requests that a delegated pro-

gram (dp) be incorporated to the elastic process �". This action performs the actual

transfer of the program code, e.g., using the trivial �le transfer protocol tftp [Sollins,

1992]. For an rds Delegate to succeed, the following actions must be completed by

the underlying runtime support of �":
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Figure 2.2: Using rds Services

� The delegating process must be authenticated according to a prede�ned security

policy.

� The dp must be checked by a translator to ensure that it is a legal program

that complies with its prede�ned language rules.

� The dp must also �t under the current resources available in �".

These actions are all performed implicitly by the underlying elastic process runtime,

without any explicit application intervention. When a dp is successfully delegated,

the elastic process runtime returns to the delegator a dp handle (DPid). This handle

identi�es the dp and is later used to instantiate or delete it. The delegator process can

share a dp handle with other processes, allowing them to create additional instances

of the dp.

A remote process can cause the deletion of a dp previously delegated to an

elastic process. This action performs the actual unlinking and deletion of the program

code of dp at the elastic process, as described in Section 2.3.2. For an rds Delete to
succeed, the following actions must be completed by the underlying runtime support

of �":
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� The deleting process must be authenticated as one with the appropriate right

to delete the dp.

� The DPid must refer to a valid dp.

� All executing dpis which are instances of the dp being deleted are terminated.

Scheduling Control of dpis

Scheduling control allows remote processes to instantiate, suspend, resume,

and terminate dpis. For any one of these operations to succeed, the �" runtime

authenticates the remote process to ascertain that it has the appropriate permissions.

The state of an elastic process includes two sets of threads: active and suspended.

An instantiated thread is in the active set until it is suspended. A suspended thread

is not scheduled until it returns to the active set through a resume action.

The rds Instantiate service allows processes to remotely instantiate a new

thread dpi from a previously delegated dp inside the address space of an elastic pro-

cess. When a dp is instantiated, the creator receives a (DPIid) handle that identi�es

the dpi and enables control operations over it. The rds Terminate service termi-

nates a dpi. rds allows remote processes to exercise scheduling control to suspend

and resume the execution of a dpi. rds Suspend moves a dpi to the suspended set,

and an rds Resume restores it to the active set.

Message Communications with dpis

rds supports communications by message exchange between remote processes

and dpis. A remote process can send a messageM to a dpi d using rds SendMsg(d;M).

The rds communication support locates the elastic process and delivers the message

to its runtime, which forwards it to the corresponding dpi. It is up to the dpi to

interpret its contents and act accordingly. This operation is similar to sending a data-

gram. rds ReceiveMsg(&M) allows a dpi to receive a message that was sent using

rds SendMsg. dpis can use the same service interface to communicate amongst

themselves.

2.2.4 A Sample Scenario

Let us illustrate a sample application of rds. Consider a Travel Assistant

Application, \TAA", that executes on a mobile laptop computer of a travelling busi-

nessperson. For example, the TAA application may assist its user in negotiating

settlements to claims. The application will access information from servers located at

the home o�ce, to retrieve old e-mail messages, summaries of previous discussions,

and so forth. Let us assume that the laptop computer is connected to the home server

via a low-bandwidth modem link, e.g., 4800 bps. The user of the TAA applications

obviously wants to minimize the cost of the phone call, and therefore TAA needs
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Figure 2.3: Delegating an Agent to an Elastic Server

to retrieve the required information quickly. The TAA application will use rds to

minimize the data exchanges required to retrieve the pertinent data.

Suppose that the traveler needs to retrieve a collection of old e-mail messages

that pertain to a set of related claims. These messages are stored at the home o�ce

on tape. The TAA front-end will �rst ask the user to provide some pertinent data

for selecting the e-mail messages for retrieval. For instance, the user may indicate

date ranges, a set of senders and receivers, and speci�c keywords. The TAA will then

compose an agent, DA, which combines the information provided by the traveler and

agent code templates from its library.

A snapshot of this delegation scenario is shown in Figure 2.3. The TAA client

process has established an authenticated and secure connection with the elastic server

ES. In the top part of the �gure the TAA is performing a rds Delegate(ES, DA,

&DPid) operation. This action delegates DA to the elastic server, ES, at the home

o�ce host.

DA can be accepted or rejected by ES, due to security or safety considera-

tions. For instance, DA may be rejected on security grounds because the TAA is not

authorized to delegate agents to the ES server that controls the tape archive. DA
may be rejected on safety grounds because its program tries to invoke a service that

violates a safety rule. For instance, ES may have a safety rule that prevents clients

connected via modem to write() to archival tape �les. If DA is accepted, it becomes

an integral part of ES, and the TAA then receives a handle to it. On the bottom

part of the �gure, ES has completed the integration of the delegated agent and is

returning to the TAA the DPid1 identi�er of the delegated agent. DA will execute

inside ES the required operations, e.g., read() from the corresponding tape.

Using DPid1, the TAA can instantiate dpi threads, di, to execute the code of
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Figure 2.4: Communicating dpis

DA inside the address space of ES. For instance, the TAA may instantiate a number

of dpis, each performing the same search concurrently on di�erent tapes. To create

each dpi, the TAA invokes rds Instantiate(DPid1, &DPIid). If the instantiation

is successful, a new thread d1 is activated and it starts executing the code of DA.

TAA receives a DPIid handle to d1, which can be used to control its execution.

For example, the TAA may need to suspend the execution of di for some time, when
it notices a local event that requires its full attention. For instance, suppose that in

the middle of executing the TAA application, an urgent fax for the user is received

at the server. The TAA application may notice this, and will temporarily suspend d1
in order to free bandwidth to speed up the reception of the more urgent fax at the

mobile laptop host. After the fax was received, the TAA application can resume the

execution of d1.
The dpi d1 can communicate with external processes and with other dpis, as

shown in Figure 2.4. In the above example, d1 may send the results of its e-mail

searches to another dpi, d2 which performs sorting, encryption and compression on

its output, before returning the results to the mobile host. Furthermore, d1 could

communicate with dpi executing on a di�erent elastic server, e.g., d3. For instance,
d3 could provide addressing information needed for the queries. When the appropriate

application information has been retrieved, the TAA can terminate its dpis and delete

its dps using the corresponding rds services.

2.2.5 Bene�ts of Elastic Processing

Resource Consumption

C/S applications often make implicit requirements for resource-rich, powerful

computing environments. Many popular distributed applications, like Mosaic, are

optimized to execute on high-performance workstations and communicate over high

bandwidth links. Distributed applications which are popular in resource-rich worksta-

tions, are often rendered almost useless in resource-constrained environments, such as

mobile devices. Such devices are intermittently connected to wireless networks, and

have low-bandwidth connections, particularly outside o�ce buildings. Mobile devices

have limited computing power, in part due to battery limitations.
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Figure 2.5: An elastic Web Proxy

Example Web Browser on Small Mobile Device

Consider a few of the problems of implementing a Web browser on a small

mobile device, e.g., a palmtop device like the HP200, which o�ers a tiny screen and

approximately 2MB of storage.

� Since HTML pages are typically designed for larger displays, users of this

browser will need to scroll frequently.

� Because of the limited storage, the device cannot keep large graphic �les �les

retrieved via HTTP.

� Because mobile communications are typically performed over low-bandwidth,

error-prone wireless links, they can signi�cantly hamper and delay remote data

exchanges. Following a url hyperlink assumes that there is an available con-

nection to the Web server, but these connections are often unavailable.

Flexibility in the allocation of processing tasks may enable applications to exe-

cute appropriately in environments of di�erent resource characteristics. For instance,

the palmtop device could use an elastic process on a stationary workstation to act

as a proxy HTTP client. Such a proxy would execute most data retrievals over a

high bandwidth connection. Agents could be delegated from the palmtop device to

the proxy to �lter, reformat, and compress Web pages, reducing their bandwidth and

screen requirements. This is illustrated in Figure 2.5.

The elastic server proxy will perform most of the data exchanges with remote

Web servers, thereby reducing the delays due to the wireless connection. The per-

minute usage cost of remote interactions over low bandwidth wireless connections may

be very high. Adapting application processes to incorporate compression algorithms

as needed decreases their bandwidth requirements, and hence reduces their wireless

phone bills. The laptop itself could be augmented by the proxy with customized code

to decompress each Web page. The laptop browser could also maintain a cache of

frequently used (or soon to be used) Web pages. The proxy can track the content of

this cache and refresh it when the original Web pages change.
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Performance of Interactions

For many distributed applications, dynamic process extensibility can improve

interaction performance. For instance, elasticity may reduce the number of process-

to-process interactions. For instance, the delay experienced by a Web browser when

retrieving remote data varies signi�cantly depending on its network connection. Mo-

bile computers, in particular, are attached to di�erent network connections at di�erent

times. For instance, they can be attached to a docking station with a reliable 108

bits-per-second (bps) LAN, or with an unreliable wireless connection at 103 bps.

The application's performance could be improved signi�cantly if the client

process adapts di�erent protocols for use depending on the available resources. For

instance, in the above example this could be done by retrieving only text from the

proxy to the laptop when using a low-bandwidth connection link. On the y exten-

sibility of a process can assist in adapting the application to dynamically changing

environments. Several such problems are illustrated with examples of distributed

management applications in Section 3.5.

Program Size

Mobile devices have limited storage capacity, due to weight and price consider-

ations. While there are many expensive laptops with large resources, there are many

small devices which only o�er very limited amounts of storage. Elasticity can reduce

the size of the application code that must be present at the device. Many client

programs require large disk space for their code and for their temporary data. Some

versions of Mosaic, for instance, require almost 1MB of storage for the executable

image. Other useful clients are even larger, e.g., a fully con�gured Notes client re-

quires more than 50MB. Large size clients require many diskettes for distribution,

making it di�cult and expensive to give away free samples. Large size makes it very

di�cult to transfer an entire client to a remote host, particularly over low bandwidth

connections, e.g., phone lines.

Implementing an application component as an elastic process can facilitate

its distribution. One need only distribute a small core of the process, and it will

dynamically retrieve additional functions as needed. Distributed applications can

store temporary data at intermediate proxy servers and use delegated agents to page

them. For example, in the Web browser example above, the space required for caching

large image �les (e.g., .gif �les), can be allocated at the proxy server host.

2.3 Architecture of Elastic Processes

The software architecture of the elastic processing runtime environment is

strati�ed in three layers, as shown in Figure 2.6.

� At the top is the application layer, where dpis execute as threads that exchange

messages via an asynchronous communication service.
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Figure 2.6: Elastic Process Runtime Layers

� The second layer implements a \Delegation Backplane Middleware", dbm, that

provides support for rds operations. dbm allows the integration of dps within

an elastic process, the instantiation and execution control of dpis, and commu-

nication between them. Like an operating system microkernel, dbm provides a

small set of services.

� The third layer is a \thin veneer" that provides an api for accessing O/S services.

The second layer implementation assumes that the underlying O/S services have

POSIX [Lewine, 1991] semantics.

This section describes how the dbm components support rds. rds allows

processes to add, modify, and delete the services of an elastic process without stopping

its execution. To provide this functionality, dbm must:

� Ensure that dps follow some set of rules.

� Appropriately store and integrate dps within the elastic process.

� Establish a exible security policy for elastic processes, e.g., authentication.

� Support the rds remote control of dpis.

� Support communication between dpis and the external environment.

� Manage the allocation of resources between the dpis, protect concurrent accesses

to shared objects, and handle all asynchronous events.

dbm is implemented by a collection of interacting thread components, each

responsible for certain aspects of the above issues. Figure 2.7 depicts the internal

structure of the dbm and the relationships between its component threads: the Con-

troller, Protocol, Repository, Translator, dpi-Manager, IPC, and Scheduler.

The Controller executes as the initialization thread to con�gure the elastic

process dbm. When a delegator process performs a rds Delegate, the Protocol com-

ponent receives the dp. The Repository stores the dp, and assigns it a unique external
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identi�er, the DPid. The Translator compiles and links the dp. Requests to instan-

tiate dps are forwarded to the dpi-Manager. The dpi-Manager implicitly interacts

with the Scheduler to support the rds Suspend, rds Resume, and rds Terminate

requests. The Scheduler implements a preemptive multi-priority round-robin policy.

dpis communicate by invoking services provided by the ipc component. The following

subsections describe in more detail the functionality of each component.

2.3.1 Controller

The Controller initializes the dbm runtime environment by instantiating all the

other component threads. It reads con�guration instructions from an initialization

�le, e.g., .dbminit. Policies which are invariant for the lifetime of the elastic process

are implemented as dps which are instantiated by the controller. A typical line in

this �le is an instruction to load and initialize a new load-time thread for a speci�c

function. Load-time threads can be either dbm con�guration threads or application

speci�c threads which are being pre-delegated. The controller can be instructed to

self-delegate a dbm con�guration thread to support a speci�c authentication scheme.

An example of an application speci�c dpi is an snmp-agent thread that supports

mib requests. Such an snmp-agent is application speci�c but requires load time

initialization of its data structures.

2.3.2 Protocol

This component implements the protocols that allow remote processes to re-

quest rds services and to communicate with dpis. It implements a �le transfer

protocol to delegate dps, and exchanges messages with remote processes to support

the rds services. The Protocol thread becomes a proxy for remote processes, locally

invoking rds services on their behalf. For instance, if a dpi sends a message to a

remote process, the Protocol thread forwards it to its destination.

The �rst prototype implementation supported only a trivial access control

authentication for dps and dpis based on their respective handles. A later implemen-

tation [Dupuy, 1995] added optional MD5 [Rivest, 1992] authentication (see Section

2.4). The protocol component is designed to support di�erent network protocols and

data representation encodings. The current prototype is implemented over the BSD

socket interface and uses either tcp connections or udp datagrams of the tcp/ip

protocol suite [Comer and Stevens, 1993]. It uses the asn.1 Basic Encoding Rules
[ISO, 1990b] to encode rds message headers.

2.3.3 dp management

Repository

The Repository provides a common database service to store dps in the un-

derlying �le system. This interface allows it to store, lookup, and delete dps. For
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example, after receiving an rds Delegate request, the Protocol module stores the

intermediate �le with the Repository. If the delegation attempt is successful, the

Repository returns a handle to the dp, DPid. The Repository provides a naming ser-

vice to map between these DPids and the internal names used by the �le system. The

Repository maintains an internal data structure representing each dp. This structure

contains a �le system reference to the actual code and additional information describ-

ing dp characteristics, such as usage count and authentication related information.

Translator

The Translator compiles source code dps, and stores the output object code in

the Repository. If the dp violates any of a set of de�ned rules for the given language,

the dp is rejected. For example, a prototype elastic process supports a speci�c subset

of the ANSI C [ANSI, 1989] standard as the base language for encoding dps. This

subset language restricts dps on their ability to bind to external functions. The dbm

runtime maintains a prede�ned set of allowed functions. If a dp invokes an arbitrary

external function which is not listed in this list then the dp is rejected. A language

compliant dp is dynamically link-edited into the address space of the executing elastic

process. dp languages are further discussed in Section 2.3.6.

2.3.4 Thread Management

dbm support for dpi threads is provided by the dpi-Manager, ipc, and Sched-

uler components.

dpi-Manager

The dpi-Manager allows remote processes to instantiate, kill, suspend, and

resume dpis. When a process (local or remote) wants to instantiate a dp, the cor-

responding message is forwarded to the dpi-Manager. This component also implic-

itly interacts with the Scheduler to support the scheduling requests rds Suspend,

rds Resume, and rds Terminate. The dbm runtime protects concurrent accesses to

critical regions, preventing threads from concurrently accessing shared data struc-

tures. For example, dpis may dynamically allocate memory, and this memory must

be managed by the runtime environment. The runtime provides a \jacket" for the

memory allocation library routine, i.e., malloc, to maintain bookkeeping of the allo-

cated memory per-dpi. When a dpi terminates, its resources (memory, implicit locks,

etc.) are freed.

IPC

The IPC component supports e�cient asynchronous communications between

dpis on the same elastic process over shared memory. It provides a send/receive

interface that masks all the complexity of handling shared memory. Messages are
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Figure 2.7: Elastic Process Runtime Environment

sent and received in the same way for both local and remote partners. dpis can either

poll or wait to receive a message. It also provides shared access to I/O facilities, and

traps and handles all asynchronous events and signals.

Scheduler

The Scheduler provides a programmable, preemptive multitasking scheduling

facility. A dpi thread is put to sleep either when it waits upon some resource, runs

for the full duration of its time quantum, or voluntarily relinquishes the processor. A

dpi yields the cpu implicitly by waiting for some event or explicitly calling a function

to put itself to sleep. The entire state of the threads is maintained in user space, i.e.,

no O/S kernel resources are allocated per thread. Thus, dpi switching is e�ciently

done without changing address space. Section 3.3.4 presents scheduling mechanisms

to implement dpi's priorities.
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Figure 2.8: Full Process dpi Controllers

2.3.5 Full Process dpis

The Full-Process dpi Controller (fdc) process supports the execution of dpis

as full address-space processes. The fdc supports rds requests to control heavy-

weight dpis, i.e., instantiate, suspend, resume and terminate them. The fdc is a

distributed extension of the dbm, which acts as a demon process at each host. The

fdc communicates with the elastic process dbm, and controls process instances ex-

ecuting in its host. Messages sent to and from a heavyweight dpi are forwarded by

the Protocol thread to the corresponding fdc. Figure 2.8 shows fdcs on hosts 2, 3,

and 4. Each fdc controls the execution of the full-process dpis in its host. Remote

processes from any host can communicate with any dpi, and the corresponding fdc

will forward their messages.

Comparison of Full Process vs Thread dpis

Supporting dpis as full (e.g., Unix \heavyweight" address space) processes

has several advantages. A full process can be easier to port across heterogeneous

environments, and can provide greater exibility of resource allocation. If the dpis are

computationally bound, distributing them among several hosts provides an e�ective

way to harness additional computing power. For example, a distributed geology

application used full process agents written in Concert/C [Auerbach et al., 1994a] to

collect and analyze seismic sensored phenomena [Soares and Karben, 1993].

A multithreaded elastic process presents a single unit for operating system

enforced resource constraints. For instance, a single elastic process is limited in

the number of concurrently open �les that can be shared by its dpis. If there is a

need for more resources per dpi than available, we can either create more instances

of elastic process or execute the dpis as full processes with a larger allocation of
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resources. Also, dpis that may be unreliable or untrusted can be tested in a more

secure, encapsulated environment without introducing risks to the rest of the elastic

process. For instance, an elastic process may receive a delegated agent from a suspect

source, e.g., an anonymous posting. To prevent harm to its internal resources, the

elastic process may execute such an agent as a separate process, thereby using existing

O/S mechanisms to protect processes.

Implementing dpis in a multithreaded environment o�ers many advantages:

� The context switching time for a thread is typically much lower than for a

`heavyweight' processes.

� dpi threads may execute in parallel when multiple cpus are available.

� Threads can overlap the execution of slow operations (e.g., I/O) with compu-

tational operations.

� dpi threads can share access to common resources, such as open �les.

� Several programming models can be used for organizing dpi applications, in-

cluding the dispatcher worker, team, and pipeline models [Tanenbaum, 1992].

2.3.6 Agent Languages

Elastic processing is language independent. That is, an elastic server can be

con�gured to accept agents written in an arbitrary programming language. This

section discusses the advantages and disadvantages of particular programming lan-

guages for writing delegated agents. Application programmers can write dp agents

on di�erent languages, according to their requirements and environment consider-

ations. Programmers choose a given language for many di�erent reasons: because

they can reuse existing code, because its constructs simplify a given task, because of

programming-culture bias, or to comply with administrative edicts. Some programs

are easier to write in a scripting language, while others require industrial-strength

languages and tools.

We designed elastic processing to leave the choice of agent programming lan-

guage open3. We expected that newer and better languages would appear. And

indeed, since we implemented the �rst prototype in 1991, several new agent scripting

languages have appeared. Among the most popular are Java [Gosling and McGilton,

1995], Safe-TCL [Borenstein, 1994], and Telescript [White, 1994]. Each of these lan-

guages provides features that are useful for remote delegation.

However, many tasks cannot be e�ectively handled by interpreted \safe" lan-

guages. For example, operations management applications often require real-time

tasks and direct memory access which are not supported by scripting languages. For

instance, Telescript agents can not directly examine or modify the physical resources

3Therefore we avoided making a \religious" choice.
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of the computers on which they execute. Similar restrictions are imposed by other

\safe" scripting languages, like Safe-TCL and Java.

In theory, these languages can be used for almost any application. In prac-

tice, their limitations restrict their use to very speci�c application domains, such as

executable e-mail messages (Safe-TCL) and animation applets in Web pages (Java).

Section 2.7.4 presents a comparative description of these newer remote scripting tech-

nologies with remote delegation.

rds allows programmers to reuse existing code and development tools to de-

velop agents. Indeed, one can take any existing code and transform it to a delegated

agent. An elastic process could be con�gured to accept delegated agents written

in any of these languages. It is even possible to delegate an entire interpreter of a

language L to an elastic process, and forthwith delegate agents written in L.
The �rst rds prototype implementation supports agents written in a subset

of ANSI C [ANSI, 1989]. This subset allows delegated agents to access a prede�ned

set of functions, and eliminates their ability to invoke arbitrary external or internal

functions. Even the default C library functions must be explicitly allowed by being

listed in a special con�guration �le, which is loaded by the Controller.

We chose C as the base dp language because it is ubiquitous and general-

purpose. Its low-level facilities, limited restrictions, and e�cient implementations

make it convenient for most programming tasks. Furthermore, we were able to reuse a

lot of existing C source code to create agents. Each agent is checked by the Translator

using the system linker. The output of the compiler is linked with an object �le that

contains empty de�nitions of the allowed functions. If the linker complains about

unde�ned references, the dp is rejected and a proper explanation message is sent to

the delegator.

Another option is to use a traditional programming language augmented with

appropriate constructs for distributed programming. For instance, Concert/C [Auer-

bach et al., 1994b] extends ANSI C to support remote process creation and com-

munication via both rpcs and asynchronous messages. Interprocess communications

interfaces are type checked at compile time and/or at runtime. All C data types,

including complex data structures containing pointers and aliases, can be transmit-

ted as parameters. Concert/C programs run on heterogeneous environments and

transparently communicate over multiple rpc and messaging protocols. Concert/C

hides the complexity of programming interacting distributed applications. It allows

programmers to reuse their large existing base of code (and skills) in C.

dp Generation and Formats

Applications are not required to generate the code of their agents during ex-

ecution. Most likely, a delegator process will use pre-de�ned and readily available

agent programs. Such programs will encapsulate application-speci�c expertise. Still,

nothing prohibits applications from on-the-y construction of agents. For example,

a Web server could dynamically compose a delegated agent based on the identity of

the client. Such an agent could be written to match the computational resources
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available to the client. For instance, if the client process executes in a wireless device

then compression algorithms are built into the delegated agent. Alternatively, if the

client host is a 3-D graphical workstation, special rendering e�ects are included.

Agents can be delegated in either source-code, intermediate-code, or object-

code format.

� Source-code dps require compilation and dynamic linking (C) or interpretation

(TCL). Source-code dps are portable and hence convenient to send to remote

processes, as the sender does not need to be aware of the receiver's hardware

architecture.

� Intermediate-code dps are represented in a machine-neutral format that can

be interpreted or translated to the local machine format. They require the

existence, at the receiving process, of the corresponding interpreter or compiler

back-end. For example, Java [Gosling and McGilton, 1995] compilers produce

safe intermediate-code.

� Object-code dps are in machine speci�c format. The delegator must be aware

of the object code format accepted by the elastic process. As it is very di�cult

to evaluate the safety of a object code, it should require special authorization.

2.3.7 Execution Control and Reliability

rds supports controlling the execution of remote dpis. For example, a process

may instantiate a remote agent that monitors certain device parameters, and reports

periodically a computed statistical value. At certain times, an event of high priority

may require that the delegator process temporarily suspend the dpi's reporting. rds

maintains the state of delegated agents in the elastic processes, i.e., an elastic process

is not stateless. The code of the delegated agents is kept on stable storage, but the

state of the thread instance is volatile by default. Delegated agents may choose to

implement thier own recovery mechanisms to survive failures.

rds must deal with di�erent classes of failures, during both agent delegation

and execution. For example, a delegated agent may not be accepted by an elastic

process if the delegator process does not have the proper authorization. Also, a

delegated agent may be rejected if it violates some safety constraint, it is too large to

store, and so forth. During execution, there are many more potential error situations.

For instance:

� a dpi may not be able to allocate su�cient memory for its computations,

� the delegator or the elastic process may crash during a message exchange, and

� network connectivity can be temporarily lost.

The problem of elastic process reliability is an instance of the generic problem of reli-

ability for state-full processes. Thus, traditional recovery solutions, e.g., transactions
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could be applied to rds operations. The current implementation does not provide

any support for recovery, takes trivial recovery actions whenever possible, and informs

the parties when failures occur.

Implementation

The �rst elastic process prototype was implemented on the SunOS 4.1 O/S,

using the lightweight process (lwp) library. This prototype was �rst demonstrated at

the InterOp 1991 conference (see Section 4.6.5). The second prototype, the SMARTS

Operations Server (SOS) [Dupuy, 1995], was implemented in Solaris and other oper-

ating systems.

2.4 Security

Network security problems can undermine the security of distributed appli-

cations. For example, (1) a protocol analyzer can compromise communications by

analyzing protocol frames; (2) malicious attacks can target devices to bring an entire

network down. Even simple statistical observations can be used to identify critical

network resources and target them. Security management is concerned with moni-

toring and controlling access to the network resources [Stallings, 1993]. This Section

describes some of the security issues of elastic processing, which are related to the

above discussion.

2.4.1 rds Security Requirements and Threats

Let us consider the speci�c rds security requirements and the potential threats

that they address. Traditional security requirements [Stallings, 1993] include: (1)

information secrecy or con�dentiality, e.g., authorized access to dp �les, (2) data

integrity, e.g., dps can only be deleted by authorized parties, and, (3) resource avail-

ability, e.g., dpis should not be denied to authorized parties. Potential security threats

include interruption (e.g., an unauthorized party suspending a dpi), interception (e.g.,

accessing the contents of dpi messages), modi�cation (e.g., dp tampering), and mas-

querade (e.g., assuming the identity of an authorized party to insert counterfeit dps).

Security requirements and threats must be addressed in the context of speci�c ap-

plication and installations needs. Obviously an elastic process calendar application

needs a high level of security at a military installation, and a lesser level at a high

school.

rds Introduces Potential Security Risks

rds provides an \access path" to remote resources across security domains.

Thus, rds increases the potential risks of security exposures by providing opportuni-

ties for remote attacks. A few examples:
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� A rogue agent could be delegated to an elastic process to destroy �les. A trojan-

horse agent could disrupt the execution of the elastic process, or even make it

crash.

� A pernicious user could intercept and garner rds frames en-passant. From these

frames the attacker could infer information about the capabilities and location

of a remote elastic process. They could, for instance, attempt to send a modi�ed

copy of a dp to the elastic process in disguise.

� A user could besiege an elastic process with requests, thereby denying access to

other legitimate users.

Clearly, it is inappropriate for any process to import arbitrary code into a system

without the owner's consent. Elastic processes should avoid receiving agents from

non-reputed sources. dbm provides an explicit and con�gurable mechanism to receive

and check imported code, based on authentication and constrained execution.

2.4.2 rds Security Model

The rds security model can resolve these problems. It includes (1) authen-

tication of the original party making a request, (2) detection of tampering with a

request, and (3) execution on a constrained environment.

Authentication

rds clients need to be trusted to download and execute agents in remote

entities. What these delegated agents are permitted to do may vary depending on

the identity of the requesting party. For example, one subject may be permitted only

to run certain prede�ned dps, while another may be permitted to perform control

operations. These privileges are de�ned by each elastic process. For instance, an

elastic process that performs network management functions may only allow certain

administrators to perform rds actions.

The rds protocol must be able to establish the identity of each requester. An

rds party identi�es principal \subjects" which are the sources of rds requests, and

associates privileges with their identity. To determine who authored an rds message

requires an authentication framework which includes an unforgeable digital signature

and a corresponding unforgeable digital integrity veri�cation. At the same time, rds

must ensure the integrity of each request, i.e., that the contents of each message have

not been tampered with. Data integrity assures that messages are received as sent,

with no duplication, modi�cation, or resequencing.

One way to achieve this is by �ngerprinting each rds message with a digital

signature. This signature is a function of both the signer entity and the message data

that implements each request. A message digest �ngerprint can be used to guarantee

that the data on an rds message has not been modi�ed. Data con�dentiality assures

that information is not disclosed to unauthorized parties. To support con�dentiality,



43

the contents of the message must be encrypted, e.g., using the Data Encryption

Standard, DES.

Message Digest - md5

The md5 algorithm takes as input a message of arbitrary length and produces

as output a 128-bit hash-code or \message digest" of the input [Rivest, 1992]. Rivest's

conjecture is that it is computationally infeasible to (1) produce two messages that

have the same message digest, (264 operations) and (2) to generate a message that

produces a given message digest (2128 operations). Thus, md5 can be used to provide

a digital signature of a message.

SOS authentication

The sos implementation of rds supports md5 authentication. An sos party

uses the ktadd command to add security keys for the party to a key table. The key

table entry for an sos party identi�es the authentication and privacy protocols used

by the party. A party is identi�ed by a string <id>@<host>:<port> where <id> is a

party ID number and <host>:<port> identify the host and the port number of the

sos process. For instance, ktadd 0@sutton:12345 md5Auth identi�es party 0 for

the sos at host sutton listening on port 12345, and requests md5 authentication. The

default is no authentication.

Access Control

Elastic processing can support a �ne granularity of access control policies. For

example, an elastic process can introduce access control lists that de�ne the proper

granularity of access to its local �les and services. It can de�ne lists of actions which

are restricted, and determine the appropriate granularity of control for those actions.

For example, a certain class of dpis can be allowed to invoke a speci�c list of prede�ned

services, e.g., read(), but will not be allowed to invoke others, e.g., write(). An elastic

process could give to each delegated agent the capability for a �le to be written.

Thus, the elastic process will not risk having the agent write over other �les in the

same directory. A major problem with capability-based approaches is the complexity

involved in keeping track of all the di�erent capabilities.

The elastic process itself has limited access to local resources. These restric-

tions are enforced by the local O/S, e.g., by executing the elastic process under

constrained privileges. A dp can not access resources that the elastic process itself

could not have accessed. Thus, each elastic process establishes a security domain for

dpis. For instance, an elastic process in Unix can be executed with a userid of nobody

which has no access to any local resources.
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Example: Network Management Security

One of the main applications of elastic processing is network management.

Network managers need substantial control over remote resources, e.g., they need

to reboot devices and upgrade their software. Such actions are di�cult to perform

using a \safe" language based security mechanism. These language-based mechanisms

typically restrict these types of actions, and do not provide built-in authentication.

For network management purposes, an elastic process should prevent unknown parties

from accessing any resources, while allowing the authorized managers full control over

their devices. Therefore, as long as the elastic process can insure the authenticity of

the party making the request, it should allow it to perform its management functions.

\False" security occurs when a supposedly strong security mechanism is imple-

mented on a weak underlying foundation. For instance, a secure language interpreter

(say Java) can give a false sense of security if the underlying O/S allows a virus to

infect the interpreter itself. Security functions are e�ective only when they rely on

strong O/S security foundations. It is wasteful to allocate signi�cant resources for

enforcing security, and then execute them on top of an O/S that has many security

holes.

2.4.3 Safety

An elastic process can be con�gured to accept agents from di�erent sources,

creating potential security problems. For instance, a Web browser that imports agents

from public non-reputable repositories incurs a risk of \viral" infection. A safe pro-

gramming language is expected to guarantee that agents written in it can not harm

the accepting process. For example, safe-TCL will execute script agents considered

unsafe on a separate interpreter with restricted access, preventing them from access-

ing resources in an unauthorized fashion. An attempt by such an agent to access a

�le will result in prompting the workstation user for authorization.

Most general-purpose languages, like C, are inherently unsafe, and can expose

the elastic process to unacceptable hazards. For example, a C agent can overwrite

unintended memory locations within the shared address space, cause memory leaks,

and so on. Unsafe agents can potentially cause the entire elastic process to crash.

These risks may be unacceptable for many applications.

Safe languages must restrict the capabilities of their agents to prevent such

problems. Hence, safety often comes at a signi�cant cost in programming exibility.

Indeed, safe languages are unsuitable for many application tasks. Safe-TCL, for

instance, is a small \scripting" language that lacks arrays and structures to make

linked lists. Its numeric operations are interpreted and therefore too slow for many

types of applications.

If agents can be written in an unsafe language, the applications that receive

them will often require a stronger level of security. For instance, they will only accept

agents from well known sources, after verifying that the agents are original and have

not been altered. One way to achieve this is by �ngerprinting each rds message with
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a digital signature.

2.5 Performance

This section evaluates the performance characteristics and implications of elas-

tic processing for distributed applications. Our goal is to compare the performance

of rds applications to traditional C/S alternatives.

2.5.1 Background

Two basic metrics for evaluating the performance of computing systems are

response time, the time between the start and the completion of an event, and through-

put, the total amount of work done in a given time period. Our main concern is that

of minimizing the overall response time or transactional time for the application end

user who makes a request. Studies report that user productivity is inversely propor-

tional to transactional time [Hennessy and Patterson, 1990]. The transactional time

performance of a distributed application request depends on many factors:

� System parameters, such as cpu speed, memory size, and network bandwidth.

� Application dependent factors, such as the number and level of process interac-

tions, the type and number of parameters for each exchange.

� Communication related factors, such as data marshalling and network quality

of service requirements.

2.5.2 A simple example

Let us compare the response time performance of a simple distributed appli-

cation, based on the TAA example of Section 2.2.4. This application consists of two

sequential processes, a client executing at a laptop, and a server process executing

at the home o�ce. The client needs to retrieve archival e-mail messages which �t

certain criteria. The message sequence M = (m1; m2; :::; mn) is stored on a large �le.

The �ltering criteria on a message mi is de�ned by an arbitrary Boolean function

FilterCriteria(mi; mp), where mp is the previous e-mail message that �ts the crite-

ria. For instance, the FilerCriteria is looking for a chain of related e-mail messages.

A server process, S, provides �le-level access to the e-mail �le. For instance,

let us �rst consider an interaction with the original rmtd server. The TAA client

process will �rst open() the �le, and then sequentially read() one by one all the �le

records. It will then execute FilterCriteria(mi; 0) until it �nds a message mj that

matches the criteria. The mj becomes mp until the next message is found. The client

will then examine each record by executing FilterCriteria(mi; mp) on each message

mi, for i = 1; n. Those messages that match are saved on a sequence (x1; x2; :::; xk)
which is needed by TAA.
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The overall response time cost function for this rigid server interaction, TR,

can be approximated by

TR = tN (open) + n � [tS(read) + tN (read) + tC(F )]

where tN (x) is the network delay of the remote interaction x, tS(read) is the time re-

quired for reading the record from the �le, tC(F ) is the time to execute the FilterCriteria

operation in the client host, C. Assume, for simplicity, that n also corresponds to the

number of �le interactions required to read the �le.

Let us now consider a similar interaction, but this time using an elastic server,

ES. In this case, the client will delegate the code FilterCriteria, e.g., via

rds Delegate(ES, FilterCriteria, &DPid).

It will then instantiate a dpi using rds Instantiate. The dpi will send to the TAA

client a copy of each message xi that matches the �ltering criteria.

The overall response time for this elastic server interaction TE can be estimated

by

TE = tN(del) + tES(del) + tN(ins) + n � [tES(read) + tES(F )] + k � tN (rec)

where tES(x) indicates that the operation x is executed on the elastic server, and k is

the number of messages that �t the given criteria. The operations del; ins; and rec

represent the cost of the rds operations of delegating the dp, instantiating the dpi

and receiving each message.

Let us compare TR and TE. The cost of �le reading is common to both so

we can ignore it. For simplicity, we assume (1) that each C/S interaction takes the

same time, � , and (2) that there is no overlap between the actions. Thus, the rigid

interaction includes (n+1)�� , while the rds interaction has (k+2)�� . The remaining
di�erence is in the location of the execution of FilterCriteria, and the extra cost

of integrating it in the elastic server. In summary,

TR = (n+ 1) � � + n � tC(F ) + tS(read)

and

TES = (k + 2) � � + n � tES(F ) + tES(del) + tES(read):

A few observations are in order:

� The cost function tN includes the time spent on activities such as marshalling

data and the actual network transit time.

� The cost of computing the function FilterCriteria depends on �xed and

variable factors. Fixed factors include cpu type and memory sizes. A variable

factor is the processing load of a shared host at the time of the request. For

instance, it is likely that a server host will be able to compute the �ltering

function much faster than the laptop.
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� The cost of delegating FilterCriteria into ES could be signi�cant, but it is

paid only once.

Let us assign reasonable numeric values to the above parameters to obtain

the curves. The cost of integrating a dp into the elastic process depends on the

host computer environment (cpu, compiler, and so forth). For a small dp, like

FilterCriteria we can approximate it by 1 second. The cost of each network

interaction varies depending on the network distance and the type of network. For a

LAN, a typical interaction would take approximately 10 ms, for a MAN 100 ms, and

for a WAN 1000 ms.

Figure 2.10 depicts the delay as a function of the number of executions of

remote access functions for a WAN. Figure 2.9 depicts the same function for a LAN.

The two lines for elastic processing correspond to k = n=100 and k = n=10. If the

number of remote accesses is small, the overhead of delegation is relatively high, and

a rigid process has smaller delay. As the number of remote interactions needed to

retrieve data grows, the relative cost of delegation lowers. After a certain point, the

aggregate delay is lower on a remote delegation interaction. Figure 2.11 depicts the

delay on a LAN, considering a non-elastic interaction with a cpu which is four times

slower than the server.

2.5.3 Performance Analysis

As computer processors get increasingly faster, distributed applications pro-

cesses will spend more time waiting for their remote interactions. Partridge [Par-

tridge, 1992] examines these e�ciency tradeo�s by comparing several paradigms of
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distributed computing interaction.

CPU cycles vs Network Latency

Over the last few years, cpu power has increased faster than any other com-

puting technology. Researchers predict that the performance of microprocessors will

continue to increase at an annual rate of 50% [Hennessy and Patterson, 1990]. Net-

work bandwidth availability is also increasing, but at a slower rate and higher relative

cost than cpus speeds. Network latency, however, is limited by the speed of light,

and quality of service constraints. Network delays are caused by geographical dis-

tance, physical layer technology and by contention for network resources. Depending

on the network's topology and routing, the delay can be signi�cantly di�erent than

what would be expected from purely geographic considerations. For example, the

round-trip delay between two hosts in Austin, Texas was measured as 596 ms, while

that between one of these hosts and a host in Japan was only 254 ms [Carl-Mitchell

and Quarterman, 1994].

Tradeo�s

It is much easier and inexpensive to provide dedicated fast cpus than to es-

tablish dedicated fast network connections to signi�cantly reduce network latency

between remote hosts. Even with the best networking technology, network latency

remains constrained by the physical limitations of the medium4. Because network

4\There is an old network saying: Bandwidth problems can be cured with money. Latency prob-

lems are harder because the speed of light is �xed - you can't bribe God." David Clark, MIT.
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delay is not decreasing at a rate comparable with the speed increases of micropro-

cessors, network latency will increasingly become the major performance bottleneck.

In other words, as cpu processing speeds increase, more distributed tasks will spend

more idle time waiting for their remote interactions to complete. That is, the relative

delay experienced by applications, measured in cpu instruction cycles, will increase.

Distributed programs that follow the traditional C/S interaction paradigm

will increasingly spend a larger portion of their time waiting for remote responses.

Waiting for data to cross the network will become a larger part of distributed programs

executions. Reducing the number of data exchanges over the network is, therefore,

critical to improve the performance of distributed systems. Delegation to an elastic

server provides a programming paradigm that can e�ectively reduce these exchanges.

Inverse Caching

Elasticity is an \inverse-caching" solution to the latency problem, i.e., to move

the applications closer to where their resources are located. Data caching, in contrast,

is used to keep data closer to where it is used. Data caching is most e�ective when

there is a high degree of locality of use, and a high degree of \hits". Caching, however,

cannot properly support highly volatile distributed data, which is quickly out of date,

and makes the cache inconsistent. For example, caching the results of measurements

from remote monitoring instruments is not e�cient if their measurements change

frequently. In such cases, getting code closer to the data is a more e�ective approach.

The spatial distribution of elastic processing provides a more e�cient utiliza-

tion of network bandwidth by eliminating many data exchanges. As network delays
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will increasingly dominate, the relative cost of individual interactions increases. Ob-

viously, delegation is only an improvement as long as the penalty of delegating code

to another process is smaller than the gain obtained by shifting function closer to its

data.

2.6 Applications of Elastic Processes

This section presents examples of application domains where elastic processes

can be used. The examples illustrate speci�c problems of distributed applications,

and describe how rds can help application developers to address them. Section 2.6.1

focuses on dynamically extending the functionality of executing applications, and

Section 2.6.2 describes the problems of adapting to varying computational resource

availability. Section 2.6.3 briey outlines some of the generic properties that char-

acterize applications that can bene�t from elasticity. Later chapters describe the

application of elasticity to solve network management problems.

2.6.1 Extension of Applications

Some software applications provide limited capabilities for dynamic extensibil-

ity. For instance, spreadsheets and word-processors support scripting languages that

allow application users to customize the application. To extend such an application,

however, end users must learn to program in its speci�c language. A major drawback

is that to reuse existing code typically requires manually translating it to the speci�c

language. rds allows delegated agents in di�erent programming languages, provided

the corresponding elastic process was properly con�gured.

The World Wide Web provides an appropriate framework to exploit the capa-

bilities of delegated agents. For instance, delegated agents can be used to search un-

structured information available in the Internet, to play interactive multiuser games,

or to extend browsers with new multimedia capabilities.

Extending a Web Browser

Consider a distributed application that assists users in calculating tax scenar-

ios. The application could dynamically extend a Web page of HTML tax forms with

a small spreadsheat. We could build an elastic Web browser that accepts the spread-

sheet as an extension. This extension could be written on whatever language the

spreadsheet was written, if the elastic browser was properly con�gured to support it.

The security of this application could be based on authenticating the source of the

program as a reputable provider of such services, and executing the browser process

in a constrained environment with only read access to certain �les.

HotJava [Gosling, 1995] is an example of an extensible client browser that

accepts code written in the Java language. Application developers can not easily

reuse their existing code for such extensions. Interpreters for languages like Java or
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TCL increase the memory size of the process. Also, the interpreted code typically

executes much slower than compiled code. We defer a more detailed comparison with

this technology to Section 2.7.4.

Extending a Web Server

Consider a laptop computer application to make reservations for a vacation,

including hotel, car, tours, and so forth5. This application will support arbitrary

personal constraints which are de�ned by rules to ensure the best possible vacation

for a given budget. Assume that the relevant information is available at some remote

Web server. A non-elastic Web server allows its clients to retrieve information based

on prede�ned queries, e.g., using forms. However, the Web server could not have

prede�ned all the possible types of queries for each vacation. The application will

need to retrieve large amounts of data from the server, and �lter it locally at the

client host. It will then execute the booking transaction at the server.

This scheme is probably ine�cient, insecure, and expensive. It is ine�cient

since it wastes cpu cycles of the client and server. By the time the information has

been retrieved and �ltered, it may no longer be relevant, e.g., the hotel room may have

been taken. It is insecure because the server must expose a lot of data to the client.

The server owner may prefer not to expose some of this data for competitive business

reasons. If this transaction is being performed over a wireless or long-distance phone

line, the cost of the data exchange is expensive.

An alternative solution is to dispatch delegated agents to an elastic Web server.

The delegated agent will contain all the speci�c rules and constraints for a particular

transaction. Such an agent could be delegated to servers from competing organiza-

tions, prompting them to compete on real time. Using delegated agents, applications

can overcome many resource constraints. For instance, bandwidth limitations are

avoided by reducing the transfer of unnecessary data.

Extending an E-mail Based Service { DFlash

The dFLASH server [Califano and Rigoutsos, 1993] is a homologous sequence

retrieval program for protein sequences. The server supports remote researchers via

e-mail requests. These requests include directives to: (1) retrieve data contained in a

very large database, e.g., about authors and dates, (2) restrict the number of reported

sequences and alignments, and (3) restrict the number of reported sequences to only

those whose score exceeds a given threshold value.

The services provided by the dFLASH server are �xed. Researchers need

to send several e-mail messages to the server, and wait for their e-mail answers to

retrieve all the sequences that they need. Then, they need to locally select and �lter

the retrieved data. Using e-mail as the data exchange protocol has the advantage

of ubiquitness, and the disadvantage of very high delays. Using rds over e-mail, a

5This example was described in Section 1.2.1.
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dFLASH server could be extended to support complex queries. For instance, a dp

could be sent to perform queries that combine selective criteria about authors and

their sequences.

Software Upgrading

Designers of long lived distributed applications cannot anticipate all the func-

tional upgrades and customizations that will be required after their software has been

installed at each site. Upgrading software typically requires shutting down processes

and replacing them with newly compiled versions. In many cases, e.g., phone switches,

the expenses of bringing the system down are substantial. Elastic processing enable

software upgrades during execution without requiring rebooting.

Software Customization

Many devices can be dynamically customized using rds. For instance, consider

the programming of an interactive game for a top-set TV device. rds can be used to to

customize the game's processes to adapt to di�erent levels of players. The application

could dynamically replace, add, or remove speci�c algorithms. More generally, any

software vendor could use delegated agents to customize their software. For instance,

a network service provider could dynamically delegate agents to interactively help new

users to learn how to use an application. Such an agent could be developed based on

the experiences of other users, after the original application has been deployed.

Software Monitoring and Debugging

Another use of delegation is to augment a distributed application with mon-

itoring capabilities. This can be very useful for debugging distributed applications
[Goldszmidt et al., 1990]. A dpi thread can be instantiated to monitor and trace

the occurrence of certain events on distributed processes. For instance, dpis could

be used to discover patterns of data access, collect and correlate event traces, and so

forth.

Application Interoperability

Many distributed applications must support an increasing number of protocols

to provide interoperability with di�erent applications. For example:

� A bank server may need to support di�erent versions of a cryptographic protocol

to comply with legal regulations that restrict software exports.

� E-Mail browsers need to support several formats to handle messages of di�erent

types.

� rpc servers may need to support (directly or through stubs) di�erent data

representation protocols, e.g., NDR, XDR, and BER.
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Providing �xed support for all possible combinations of protocols and data

representation formats results in large additions of code, whether it will be used or

not. For example, consider again the laptop client process that retrieves archival e-

mail messages (Section 2.2.4). From time to time the client application may need to

retrieve messages which were encrypted with some arcane algorithm. The client could

dynamically retrieve the decryption code only when needed, thus saving premium

laptop disk space.

Application Gateways

Elastic processing is an appropriate framework for building application gate-

ways to support application interoperability in heterogeneous distributed systems.

An application gateway performs the role of translating between di�erent application-

level protocols. For instance, an e-mail gateway can translate between di�erent e-mail

protocols for di�erent mail processes. Elastic processes are able to dynamically incor-

porate software gateways to interoperate using di�erent protocols. Dynamic software

delegation reduces the size of the code required for conversions in heterogeneous sys-

tems. Transferring code when and where it is needed enables application developers

to build more modular and smaller applications.

2.6.2 Adaptation to Resource Availability

Emerging networked environments will have a large number of small devices.

For example, a Personal Digital Assistant, pda, is a hand-held device which o�ers

wireless communication with limited storage capabilities and small displays. Typical

applications provide organizer functions (e.g., calendar), with communication abilities

(e.g., e-mail). Another type of resource-constrained environment is a \topset" device

that controls the user interface to an interactive television. These devices have very

limited memory and their network connections have limited bandwidth.

Many distributed applications have been designed and implemented with an

implicit assumption that both clients and servers will run on powerful hosts. As

pdas and other small devices proliferate, users will request to execute their favorite

applications on these devices. A typical Web browser client, for instance, can take

up to 1MB of storage. However, the amount of code actually used depends on the

particular navigation path followed by the user. A pda or small laptop computer

may not be able to keep all of the process code locally, due to memory and storage

limitations.

Dynamic extensibility could allow such a process to run with a minimal func-

tional core, and retrieve, when needed, more code from a remote server. This is akin

to extending virtual memory over the network. Elastic processing allows applica-

tion designers to implement applications that can be dynamically adapted to limited

computational and/or bandwidth resources. Note that such resource restrictions may

be intermittent. For example, the amount of available storage on a desktop host

may be limited when a disk becomes full, or the available bandwidth may be limited
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for a period of time. Elastic processing allows applications to shift functionality in

accordance with the availability of computing resources.

Example: Real-Time manufacturing

Consider a factory oor process control environment. Within a manufacturing

line, a device may need to react to a fault in real time. If the logic to handle the fault

is centralized in a client, it will require a few interactions for diagnostics. A corrective

action may miss deadlines due to unpredictable network delays. Elasticity enables a

client to delegate to the device the instantiation of time critical functionality, reducing

the need for interaction.

Example: Bandwidth Constraints

Consider a centralized client that interacts with many networked devices on

several ethernets, e.g., a �re-alarm process that monitors temperature readings by

polling. As the number of devices grows, bandwidth becomes a bottleneck, partic-

ularly during high network load. Delegating monitoring to a hierarchy of processes

during high load times reduces the number of ethernet packets. rds will allow the

client to reduce its bandwidth requirements and therefore be able to control more

devices. rds can assist in reducing the resource requirements of an application as

conditions change over time; For example, when the network becomes congested, and

when con�guration changes as applications and hosts are introduced and removed.

2.6.3 Generic Properties

The following properties characterize classes of applications that can bene�t

from elasticity:

� They execute on a dynamically evolving heterogeneous distributed environment

to which they must adapt, for example, as new hosts and devices with di�erent

hardware architectures are incorporated to the distributed system.

� They execute on a dynamically changing administrative environment. For ex-

ample, security restrictions on accessing devices may be imposed during certain

periods, e.g., long distance calls are not allowed from departmental phones after

o�ce hours.

� They execute over hosts with insu�cient computing resources, e.g., cpu cycles

and/or main memory. For example, they execute over small devices with limited

available RAM or diskless workstations.

� They execute over low bandwidth networks. For example, over phone lines or

wireless connections.
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� They are sensitive to latency delays, e.g., they need to respond to remote events

in real time.

� They must sometimes deal with intermittent resource restrictions, for example,

when a swap disk area becomes full, or when bandwidth is limited on a wireless

connection.

2.7 Related Work

Distributed applications are designed and implemented following diverse pro-

cessing and communication models. Examples of these include Remote Procedure

Call, Remote Execution, Remote Evaluation, and Remote Scripting. This section re-

views these models of distributed processing, and compares their relevant features

with remote delegation to elastic processes.

2.7.1 Remote Procedure Call { RPC

rpc [Birrell and Nelson, 1984] is a widely used mechanism for distributed ipc.

A critique of the rpc model is presented in [Tanembaum and van Renesse, 1988]

and a survey of rpc systems in [Soares, 1992]. In the rpc model a server exports

a number of �xed procedures that can be invoked synchronously by remote clients.

Upon a remote call, the caller is suspended, the remote procedure is executed by the

server, and its results are returned to the caller, which then resumes its execution.

The following are some of the di�erences between an elastic server and a traditional

rpc server.

RPC procedures are statically de�ned

rpc procedures must be statically de�ned at the time the server is compiled.

Server designers must write all the procedures required to support the entire range

of services for which a particular server may be invoked. Server designers must have

foreknowledge of (or try to predict) all the possible scenarios in which the server can

be involved. For many distributed applications, however, such early prediction is

typically not possible. In contrast, the de�nition of a delegated agent procedure for

an elastic server is independent of the server's design time. It can even be de�ned

while the server executes.

RPC is synchronous and client initiated

A second di�erence is the synchronous, client initiated invocation semantics

of rpc. In many applications, the invocation and execution of a server's procedure

should be tied to events that are not under the client's control. For instance, a fault

handler procedure on a server may need to be invoked as soon as the fault is detected in

the server's host. Using an rpc, the client would block until the occurrence of such an
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event, and then until the completion of the remote procedure. In contrast, a delegated

agent procedure can also be invoked without client intervention. For instance, it can

be triggered by an independent event in the elastic server host, asynchronously with

the client's execution.

RPC typically requires several data exchanges

A third di�erence is in the amount of data transferred between the processes.

Typically, rpc clients and servers exchange data parameters in several rpc inter-

actions. For example, consider again the application that retrieves records from an

archival tape. The client will invoke a read() rpc of the rmtd server several times

until it �nds the appropriate record. Each invocation of read() retrieves a block of

data from the tape �le. This interaction pattern results in an increased overall delay

due to network latency.

In contrast, a typical elastic processing interaction involves signi�cantly fewer

network data exchanges. An elastic server version of rmtd would get a delegated

agent to perform the search in one network message. It will then return to the client

only those records that match the given criteria. Thus, rds can reduce the number

of data exchanges, as the computation is performed in the server.

Asynchronous rpc

One way to improve the performance of rpc calls is to make them non-

blocking. This can result in e�ciency gains if the client can perform some useful work

while the rpc executes concurrently. Many research e�orts have tried, with limited

success, to address the intrinsic performance limitations of rpc. Asynchronous rpc

(a-rpc) supports non-blocking rpc calls. Promises [Liskov and Shrira, 1988] is an

example of an a-rpc design. The Concert/C [Auerbach et al., 1994b] language sup-

ports both rpc and asynchronous message sends. In an a-rpc, the client has the

choice of either wait for the call to return or to continue execution concurrently. If

it continues execution, the client can later check the return status of the remote call.

If it has not yet returned, the client has again the choice of blocking until the rpc

returns, or continuing. Note that a-rpc does not maintain the simpler semantics of

procedure invocation, which is the main reason for the popularity of rpc.

2.7.2 Remote Execution and Creation of Processes

Remote Execution

A remote execution facility allows users to execute processes on remote hosts.

However, the executable modules must already be present in that host. The V-

system [Cheriton, 1988], for instance, allows programs that do not require low-level

hardware access to be executed remotely. For example, a program p can be re-

motely executed from the command interpreter on a randomly chosen host by typ-

ing: <p><arguments>@*. Another example is the NEST system [Agrawal and Ezzat,
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1987] which provides a location independent remote execution facility. The main use

of these and other similar facilities is for load balancing, i.e., utilizing remote cpu

cycles, in homogeneous distributed operating systems.

Remote Process Creation

Other forms of remote execution are used to develop distributed applications

across heterogeneous environments. For instance, Concert [Yemini et al., 1989] in-

troduces a language-level remote process creation construct, create. The create

primitive instantiates processes at remote (or local) hosts, allowing them to exchange

bindings and communicate. To create a remote process, the executable module must

already be at the site where the process will execute. A Concert program is more

portable, since its runtime implements a common software middleware that handles

the low-level system calls to the di�erent operating systems. Thus a Concert/C pro-

gram does not need to invoke explicit process management services to create processes

on hosts with di�erent O/S. However, Concert processes are not �rst class. That is,

they can not be exchanged as parameters in rpc calls.

2.7.3 Remote Evaluation and Process Migration

Remote Evaluation allows a program code expression to be transferred between

hosts for execution. Thus, it is a restricted form of elasticity that combines delega-

tion and invocation into one single action. Typically an interpreter at the remote host

evaluates a program expression and returns the results to the client. rev [Stamos

and Gi�ord, 1990b], SunDew [Gosling, 1986], and NCL [Falcone, 1987] all implement

variations of remote evaluation mechanisms. rev supports remote evaluation of pro-

gram expressions written in the CLU language [Stamos and Gi�ord, 1990a]. NCL
[Falcone, 1987] was used to implement a networked �le system, using remote evalu-

ation of LISP expressions. Partridge [Partridge, 1992] argues that late binding rpc,

a form of remote evaluation, gives optimal performance in the number of network

transits required to complete a computation.

In remote evaluation interactions, the execution of the evaluated program is

synchronous. A rev program is executed upon its receipt by the remote host inter-

preter. Furthermore, a rev client has no control over the remote program execution.

For example, the client cannot cancel the evaluation of a rev expression. Finally,

the design and implementation of remote evaluation is programming language and

machine speci�c. That is, programs can be exchanged only between two computers

of the same architecture that support the same language environment.

Delegation to an elastic server is a process-to-process communication, while

rev is a computer-to-computer communication. A delegated agent procedure be-

comes an integral part of the receiving elastic process, so that it has access to the

process internal scope and to its external environment. A remote evaluation proce-

dure is self contained.
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Remote evaluation goes a step further than rpc in permitting the dynamic

transfer of programs to remote execution. However, both rpc and revmodels involve

synchronous procedure-call interactions whereby the agent executes the management

program upon invocation. Then, the caller is blocked until the completion of the

invocation, and/or it cannot exercise any control over it.

Process Migration

Process migration6 applies load sharing and balancing algorithms to distribute

workload among processors. The goals and implementations of elasticity and migra-

tion are di�erent. Process migration focuses on obtaining e�cient hardware utiliza-

tion, via low level mechanisms that move binary images between computers. Thus, it

is applied in homogeneous environments, in terms of same hardware architecture and

operating systems 7. In contrast, elasticity supports a high-level, application-oriented

communication model.

2.7.4 Remote Scripting with Safe Agents

Scripting agents have recently attracted great interest as a candidate tech-

nology to provide extensible and \intelligent" networked services. The word agent

is being broadly abused to refer to many di�erent entities [Riecken, 1994a]. Some

authors de�ne an \agent" as any software program that acts on behalf of some other

entity or user. For instance, \Intelligent" agents [Riecken, 1994b] is an active area

of research whose main focus is in arti�cial intelligence issues, such as knowledge

representation and planning.

Mobile agents are programs, typically written in a scripting language, which

are dispatched to a remote computer for execution [Harrison et al., 1995]. Remote

\scripting" agents enhance the remote evaluation model by providing safe languages

and security features. Several scripting languages have been proposed and used to

write mobile agents, e.g., Java [Gosling and McGilton, 1995] and Safe-TCL [Boren-

stein, 1994], \Itinerant" agents are scripting agents which roam among a set of net-

worked servers, seeking assistance and collecting information [Chess et al., 1995].

Telescript [White, 1994] is an example of an itinerant agent technology. The follow-

ing paragraphs outline their main characteristics.

Java

Java is an interpreted, multithreaded and \type-safe" dialect of C++. Java

removes from C++ \unsafe" features, e.g., its pointer model eliminates the possibil-

6A survey of process migration mechanisms is given in [Smith, 1988].
7A design for supporting heterogeneous process migration is proposed in [Theimer and Hayes,

1991]. It consists of building a machine-independent migration program that speci�es the current

code and state of a process to be migrated. The migrating program is then recompiled, its state is

reconstructed and execution is then continued on the target machine.
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ity of overwriting memory and corrupting data. Java also removes what its author

considers \unnecessary" features of C++, such as operator overloading, multiple in-

heritance, and implicit declarations of methods. The Java interpreter includes a

safety component that veri�es that the language rules have been respected. But the

Java interpreter provides no real security against \trojan horses" and other improper

behaviors. Java applets are used to add dynamic content into Web pages. These

applets can be rendered by a Web browser that supports a Java interpreter, e.g.,

HotJava [Gosling, 1995]. The HotJava browser supports di�erent levels of network

access control.

Safe-TCL

Safe-TCL is a TCL [Ousterhout, 1990] dialect that removes from TCL all the

features that can be \harmful" to the recipient. It replaces them with a number of

commands that give untrusted programs a limited ability to interact with the user

and the environment. Thus it permits mail applications to deliver active messages

containing programs that can interact with their recipients. Safe commands are used

to store and retrieve persistent data, send mail and print data, after the user's consent

is obtained. The implementation of Safe-TCL is based on a \twin interpreter" model.

The Safe-Tcl process contains two interpreters, a trusted interpreter and an untrusted

interpreter, which have a relationship analogous to user space and kernel space in

Unix. An application of Safe-TCL is the execution of e-mail messages.

Telescript

Telescript \messaging" agents scripts are downloaded to remote interpreters

called \engines", which are located at \places", stationary objects which represent

locations, e.g., a PDA. Agents can transport themselves between places and interact

with other agents in remote places. The Telescript language interpreter precludes

programs from accessing facilities from directly examining or modifying the physical

resources of their places. A permit is an object that prevents its holder's to use certain

instructions or limits the amount of a resource it can use. For instance, an agent may

be denied the use of the travel instruction go. Agent permits are created explicitly,

and must be renegotiated when the agent travels.

2.7.5 Comparison with Remote Scripting Agents

Remote scripting agents are programs which are transported from a client host

to a server host for execution. Remote delegation o�ers a few signi�cant advantages

over remote scripting. The following paragraphs contrast some of their features with

those of elastic processing. Table 2.1 presents a taxonomy of agent technologies.

The above technologies require that their agents be written in their particular

language. This introduces the problems described in Section 2.3.6. Elastic processing
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Name RDS -MbD SOS Telescript Safe-TCL Java

Implementation 1991 1994 1994 1994 1995

Languages independent independent Telescript TCL Java

Code Compiled yes yes no no partial

Interpreted no optional yes yes yes

Authentication trivial MD5 permits no no

Safety optional optional yes yes yes

Low-level access yes yes no no no

Scheduling explicit explicit no no no

Agent Dispatch yes yes yes yes no

Agent Retrieval yes yes no no yes

Main Network internet electronic active HotJava

application management services commerce e-mail animations

Table 2.1: Comparison of Agent Technologies

leaves the choice of agent programming language open. New programming languages

for scripting agents do not support legacy code and programming skills.

This is not an impediment for new applications, particularly those tailored to a

speci�c application domain. For example, Java has been used for developing Web page

animations, and Telescript has been used to develop multimedia mail applications for

personal communicators. For many application domains, however, adopting a new

language requires a major e�ort. For instance, a new language requires rewriting

existing applications, retraining programmers, acquiring or adopting new tools and

development environments, and so forth. Furthermore, some languages are simply

inappropriate for speci�c tasks. For instance, Telescript is not, as claimed, an \ideal

vehicle for network management" [White, 1994].

In contrast, delegated agents are programs written in arbitrary languages. rds

allows programmers to reuse existing code and development tools to develop agents.

Indeed, one can take any existing code and transform it to a delegated agent.

Agents can be written in both compiled and interpreted languages. In particu-

lar, one can even delegate an interpreter for an arbitrary language, and then delegate

scripts to it. This accomplishes greater generality, code reuse, e�ciency, and range

of applicability than moving to a new programming language.

Many tasks cannot be e�ectively handled by an interpreted language. For

example, network management tasks often involve real-time interactions. Telescript,

for instance, has no support for transactions, synchronization, or any other real-time

interactions. Telescript agents can't directly examine or modify the memory, �le

system, or any other physical resources of the computers on which they execute.

Similar restrictions apply to other safe interpreted languages.

Language-enforced safety restrictions limit the types of applications that can

be supported by each language. In contrast, delegation agents can be e�ciently linked



61

and executed as integral components of an elastic process environment. Elastic pro-

cesses can be con�gured to allow only tailored access to the underlying facilities that

they need. Other limitations stem from the implementation of the virtual machine

where the scripts execute. For example, the current implementation of Java contains

a garbage collector thread that is invoked when memory is depleted. At that time

this thread preempts all other threads from executing.

E�cient interaction between scripting agents and other software at local or

remote components may be di�cult and ine�cient. For example, Telescript agents

negotiate with their interpreters for access to local resources. Each agent must ex-

plicitly handle any negotiation failures, e.g., resource depletion, etc. In contrast,

remote delegation permits e�ective control of agent execution. Delegated agents can

e�ciently and transparently interact with each other, and access the resources of the

elastic process. An elastic process may choose to implement any resource allocation

policy, and can simply choose to give all delegated agents equal access.

A language-based approach requires more complex, explicit mechanisms to

accomplish security. For instance, Telescript agents need to explicitly get involved

in negotiating security permits when moving. The security model of Java and Safe-

TCL are based on a safe language. All these solutions require a \one-size-�ts-all"

security policy, which often complicates the development of applications, even when

security is not a concern. In contrast, rds enables the con�guration of a customized

security model for each elastic process. An elastic process may choose to use an

authentication mechanism for parties likemd5, or no authentication. In the same way,

an elastic process could request a privacy protocol like des to encrypt the contents

of its messages.

Telescript assumes a single common currency scheme based on teleclicks, and

always records all data in persistent store. Each agent is granted a maximum lifetime

span measured in seconds, a maximum size measured in bytes, and a �xed allowance

measured in teleclicks for expenditure of resources. If an engine exceeds any of its

�xed allocated limits, it is destroyed without any grace period. These mechanisms

are tailored to a speci�c application domain, e.g., \the electronic marketplace", but

are wasteful and inappropriate for other application domains. For example, for some

management computations there may not be any way to prede�ne a �xed alloca-

tion of teleclicks. Other applications may need to execute on resource constrained

environments, where there is no possibility of storing all data on disks.

Telescript, for instance, assumes the existence of a reliable transport between

interpreters at remote places. This is not an acceptable precondition for many dis-

tributed applications. For instance, network management applications must function

over unreliable transports. rds does not require a reliable transport mechanism.

The execution of script agents cannot be remotely controlled. For example,

suppose one site wishes to delegate agents whose execution may be controlled by other

sites. Java scripts could not easily support this model. They would need to explicitly

program and execute a master agent that simulates O/S functions. But because of

the language safety constraints, such functions are not accessible to Java agents. At
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best, these agents could voluntarily respond to remote commands. Elastic processing

provides explicit remote execution control over delegated agents.

Finally, many of these scripting technologies assume a \closed-world" environ-

ment. For instance, Telescript agents can only \extend the functionality of commu-

nication services to which they have access, provided those services are implemented

using Telescript technology" [White, 1994]. Similarly, Safe-TCL scripts execute in a

constrained interpreter. In contrast, remote delegation agents can interoperate with

other environments. Delegation does not force one or another inter-agent communica-

tions model, i.e., agents may use rpc, or any other model of process communications.

This generality is important since it comes with built-in support of rich communica-

tion structures.

2.8 Conclusions

Remote dynamic process extensibility is a very useful feature for many types

of distributed applications. Elastic processing with delegated agents presents a lan-

guage independent paradigm that supports temporal and spatial distribution. This

paradigm is de�ned by the rds service and the architecture of the dbm runtime. The

security model of elastic processes is based on party authentication and controlled

execution. Elasticity is an e�ective paradigm to overcome the network delays which

are a major performance bottleneck for many types of distributed applications. Elas-

ticity assists application developers to address several generic problems of distributed

computing environments.
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3

Management by Delegation

Management by Delegation, mbd, is the application of elastic processing with

delegated agents to network and systems management. The thesis underlying mbd is

that e�cient, reliable, and scalable network management systems can be developed

using elastic processes as network management servers. Instead of bringing data from

the network devices to the applications on a central platform, mbd applications dele-

gate parts of the management applications themselves to the networked devices. We

begin this chapter by providing a background overview of current network manage-

ment systems and a critical analysis of their problems. We then proceed to present

the main results of mbd.

Chapter Organization

Section 3.0 outlines the main functions of standard network management systems

and presents a critical analysis of their problems.

Section 3.1 outlines the approach of mbd to network management.

Section 3.2 describes examples of management applications that require decentral-

ized solutions.

Section 3.3 outlines the design of mbd and describes its components.

Section 3.4 describes the integration of mbd within a standard framework, snmp.

Section 3.5 examines some of the problems of network management systems and how

mbd addresses them.

Section 3.6 presents some conclusions.
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3.0 Network Management

3.0.1 Background

The main goal of network management systems is to ensure the quality of

the services that networked elements provide. To achieve this, network managers

must monitor, control, and secure the computing assets connected to the network.

For example, network management aims include the detection and handling of de-

vice failures, performance ine�ciencies, and security compromises. To achieve these

goals, network management systems implement speci�c management functions. The

OSI standards have classi�ed these functions into �ve major areas [ISO, 1989]: fault,

accounting, con�guration, performance, and security. Management applications use

network management services to implement these functions. For instance, they col-

lect management data using device instrumentation and management protocols, and

present it to the operators via graphical user interfaces. To accomplish these goals:

� Management applications retrieve real-time data from network elements. For

example, they collect the number of packets handled by a given interface of a

router.

� Management applications interpret and analyze the data collected. For instance,

they recognize security events, such as repeated illegal attempts to login on a

workstation.

� Management applications present information to authorized network operators.

For example, an application displays a network topology map with graphical

representations of current network tra�c.

� Management applications proactively react, in real time, to management prob-

lems. For instance, an application will disable a link that is experiencing faults.

These activities are implemented using protocols and data structures that fol-

low standards guidelines. This section outlines the main characteristics that these

frameworks share. Our aim is to give the minimal background that is necessary to

understand the main technical problems of these frameworks. For a more compre-

hensive description of network and system management issues see [Sloman, 1994;

Stallings, 1993].

Network Management System Architecture

Figure 3.1 shows a diagram of the organization of a typical network manage-

ment system. The management platform consists of one or several workstations that

interface with the network operators. Typically, an \umbrella" application provides a

graphical user interface that integrates the user interfaces of many independent man-

agement applications. These management applications perform speci�c management
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Figure 3.1: A Generic Network Management System Architecture

functions such as those described in Appendix A.2. The application processes that

execute such functions assume a \manager" role.

Management \agents"1 or \device servers" execute in managed network ele-

ments such as gateways and hosts. These servers are software processes embedded

within each manageable network entity that monitor, control and collect data from

their devices. These servers collect device data in Management Information Bases

(mibs) and support a management protocol. For instance, an snmp-agent is a device

server that implements an snmp mib. snmp is an example of a management protocol

used by platform applications and devices to exchange management data. Manager

processes and device servers form part of a virtual \management network" which

performs management functions over the \real" or \managed" network, as shown in

Figure 3.1. The managed network consists of all the networked devices which have

some type of instrumentation that permits their management.

1The network management community uses the term \agent" to refer to a server process at the

managed device which supports a network management protocol and performs certain tasks. We

will either use the term device server or qualify the name, e.g., snmp-agent, to avoid confusing them

with delegated agents.
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Figure 3.2: An snmp Network Management System

Simple Network Management Protocol

snmp is a standard network management protocol, whose name became a syn-

onymous for the entire ietf network management framework. An snmp network

management system consists of a manager platform, managed nodes (each contain-

ing an snmp-agent), a management protocol (snmp), and mibs. Figure 3.2 shows

a manager platform with a GUI and a hub device that implements an snmp-agent.

The management network consists of snmp-agents communicating via udp. An ap-

plication executing at the workstation displays a graphical representation of the hub.

Thus, when the device indicates a port failure, the application can change the color

of the corresponding port to red to indicate a problem.

In snmp, management logic is performed in a central station on data collected

from physically separated devices. Management applications are snmp clients that

contact one or more snmp-agents. Each snmp-agent is an mib server that exports

managed variables such as error counters and routing tables. snmp is a polling-

oriented protocol that uses a fetch-store paradigm. snmp de�nes the syntax of the

following management request messages: Get retrieves the current value of an mib

variable.

GetNext retrieves the value of mib variables in lexicographic order.

Set modi�es the value of an mib variable.

Trap is a noti�cation issued by an snmp-agent as an uncon�rmed asynchronous mes-

sage.
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mibs are organized as static directory trees with managed data stored at tree

leaves. The tree structure provides unique identi�cation of managed data, which the

protocol uses to read and write mib data. To retrieve the value of a speci�c mib

variable, a Get command needs to identify the path on the tree to that variable. For

example, ipInReceives is an mib variable that counts the total number of ip input

datagrams received.

3.0.2 Critical Analysis of Network Management Systems

Current network management systems follow a centralized, labor-intensive in-

teraction paradigm. In this paradigm, a network management station polls opera-

tional data from network elements and displays it to the operations sta�. Thus, the

application programs resides in platform hosts while managed objects data resides

within the networked devices. For example, an snmp-agent maintains a counter of

the number of packets that could not be transmitted by a router because of errors.

A network management application at the noc will poll the router to retrieve these

counters and then compute and display the error rates. Operators must analyze

this data to identify the causes of the errors, and diagnose, isolate, and correct the

problem.

There are many types of network management applications that cannot be

e�ectively addressed by these platform-centric frameworks, and require dynamic de-

centralization. We illustrate these through the following examples.

Example: Diagnosis of ATM Switches

A Network Operating Center (noc) needs to diagnose and handle problems

in its remote atm switches. An noc operator invokes an application program P
that executes at a central host computer to perform the required management task

as a client of the remote switch. The application uses snmp to poll operations data

from the switch and transmit to it commands. The switch contains a server process

(an snmp-agent) that exports prede�ned diagnosis and control services to external

management applications. These services are instrumentation routines implemented

by the device vendor. P uses polling to continuously retrieve diagnostics data from

the remote switch, and then it analyzes the data locally. For instance, P may retrieve

frame error counters to compute the standard deviation of the error rate. When the

error rate statistics exceed a prede�ned threshold, P remotely invokes a corrective

control action at the switch. For instance, it may request the switch to reset some

interface cards.

Control Loop

The standard management paradigm establishes a \control loop" that involves

the collection of monitoring data at the device, human interpretation and analysis

of the computation at the noc host, and the invocation of corrective actions at
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Figure 3.3: Control Loop over the Network in snmp

the device. Figure 3.3 shows how this paradigm stretches the control loop from

the managed devices across the network to the central hosts at the noc. These

control loops may fail when the network experiences failure problems, just when they

need to operate best. Centralization thus seriously limits the reliability of a network

management system.

Example: Automating the Management of Routers

Consider an organization that wishes to automate the management of its

routers. That is, the organization wants to deploy programs that (1) monitor the

operations of the routers, (2) analyze their behaviors and (3) invoke appropriate con-

trol functions. For example, suppose one wishes to deploy programs that monitor

routing tables to detect routing problems and invoke appropriate handlers. When

the network is large and fast, remote polling of large routing tables may consume

signi�cant bandwidth resources. The noc hosts may be unable to detect and handle

remote problems su�ciently fast. Centralization thus seriously limits the scalability

of a network management system.

To facilitate the automation of management functions it is desirable to localize

the monitoring and control at the devices. This could be accomplished by delegating

management programs from the central hosts to the routers. The programs would

then be linked with the local instrumentation to monitor, analyze, and control the

routers. Upon detection of a problem these agents can cause the delegation of addi-

tional agents to the router and to attached systems and thus control their execution.

These agents may be used to execute tests that isolate the problem and then recon-

�gure the router and other systems to recover from it.

Standard Approaches to Network Management

The above application examples illustrate a typical network management inter-

action following the prevailing standards paradigms. Network elements are equipped

with instrumentation and control services that execute in the scope of the device

itself. These services are de�ned by the device vendor and/or by standards com-
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mittees. In contrast, the logic implemented by network management applications

executes primarily at the central hosts of the noc. These applications implement

installation speci�c policies and are therefore customized to each particular network.

Applications access the instrumentation and local state of the devices via standard

management protocols. The management frameworks that are derived from these

standards separate these applications from the the devices that they need to control.

Because of their centralization and lack of extensibility, management applications

su�er from several performance problems (see Section 3.5).

The management application processes in the platform hosts interact with a

large number of rigid device servers. This interaction paradigm concentrates most

processing into the platform workstations. The design of the management framework

explicitly assumes that the network devices have limited computing resources for

management purposes. Device servers are therefore relegated to collecting primitive

data and making it available to the platform applications. These applications (1)

retrieve data from the device servers using a management protocol (e.g., snmp), (2)

interpret and compute functions over the retrieved data (e.g., statistics), and (3) direct

the device servers (e.g., how to handle fault scenarios). snmp-agents are implemented

as rigid, non-extensible device servers. Their mibs and services are typically de�ned

by a standards organization.

Example: The Micromanagement Problem

Let us consider a simple example of a network management task. Suppose that

a network operating center needs to execute a management program to diagnose and

handle port failures in a network hub. A skeleton code fragment of such a program is

given in Figure 3.4. The symptom event evaluation function (symptom event()), the

management procedures (diagnostic test(), partition port()), and the man-

aged variable (port[]), are all implemented within the hub itself. That is, these

functions and variables are computed via instrumentation routines which are an in-

tegral part of the device. However, in a typical network management system, the

program itself resides and executes at a host of the network operating center plat-

form.

Let us consider the problems involved in accomplishing such simple handling

of port failures using snmp. The symptom event() function describes potential port

failures. This event is detected by polling some mib variables that indicate the state of

each port. Suppose that this event is signaled when the error-rate at a port exceeds

a certain threshold. For instance, when 10% or more of the frames received on a

given interface card are discarded due to errors. snmp mibs typically include error

counters, (e.g., ifInErrors), that provide cumulative (integral) numbers of errors

since the agent's boot-time. The values of these variables can be retrieved via snmp's

Get requests.

To evaluate the above event the management application needs to compute

changes in error rates. That is, it needs to compute the second time derivative of

the error counter variable. To perform this computation, the platform application
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void

correct_problem() {

int sympttype;

if (symptom_event(&sympttype)) {

while(i=0;i<num_ports;i++)

if diagnostic_test(port[i], sympttype)

partition_port(port[i]);

}

}

Figure 3.4: A Management Program Example

will need to poll ifInErrors at a very high frequency. Remote polling via snmp

introduces network delays in the observation of these changes. The mere detection

of the symptom may be di�cult or even impossible to accomplish via snmp polling.

We describe this problem in greater detail in Section 4.3.

Executing a diagnostic test() requires (1) that the corresponding procedure

has been prede�ned in the device server, and (2) that it can be invoked as a side-

e�ect of a snmp Set to a corresponding variable (e.g., diagnosePorts) on some

private mib. The platform application will then need to poll another mib variable

(e.g., diagnoseComplete) to ascertain that diagnostic test() has completed its

execution. Then it will need to reset this variable via another Set. It will then need

to poll for the results of the test, in an mib table whose entries record port failure

variables. Finally, for each positive port failure it will invoke partition port()

as a side e�ect of another Set.

snmp forces platform applications to micro-manage devices

This simple example shows how the snmp interactions between noc applica-

tions and device servers can force a platform host to micro-manage its network devices.

Micromanagement occurs when a platform application must control the execution of

a management program at the device by stepping the device's server through it. This

occurs because the management protocol lacks appropriate expressive power to sup-

port more \semantically rich" interactions. For instance, snmp does not support

the composition of primitive management actions in a exible and e�cient fashion.

Indeed, the limited primitive verbs of the management protocol lead to a very high

rate of platform to device interactions. Manager platforms are forced to micromanage

remote devices through the network, even for simple tasks. More complex manage-

ment tasks require an even greater degree of interactions between the central hosts

and the networked devices. Management applications are, therefore, seriously limited

in processing non-trivial tasks.
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3.1 The MbD Approach to Network Management

This dissertation introduces a novel approach to network and system manage-

ment, namely Management by Delegation or mbd. While our main focus in terms of

examples and applications is on network management applications, mbd is equally

applicable to distributed system management applications2. The approach of mbd

is to dynamically distribute the management computations to elastic servers (mbd-

servers) at the devices where the managed resources are located. An mbd-server is an

elastic process customized for network management and provides e�cient bindings to

management instrumentation, and support for snmp interoperability.

For instance, consider the examples presented in Section 3.0.2. The manage-

ment applications could delegate the computation of the diagnostics routines to the

devices. By reducing the number of network interactions, the management applica-

tion would gain much faster response time to the relevant events at the switch. Figure

3.5 shows how the \control loop" is made much smaller and kept inside the device.

mbd applies elastic processing to support spatial and temporal distribution of

management functionality. Spatial distribution reduces the physical distance between

an application and the devices that it manages. Spatial distribution reduces the

overhead utilization of the network for management purposes and the delays involved

in accessing remote data. For example, applications that need to evaluate and react to

transient events of short duration, such as noice bursts in a line, need to be distributed

to the devices.

Temporal or dynamic distribution is the ability to dynamically delegate new

management code to a device when it is needed. Temporal distribution assists the

developers of management applications to modify their management policies as ad-

ministrative requirements change, and as the network environment grows and evolves.

For instance, when a new pattern of failures is suspected at a switch, a new agent

can be delegated to evaluate and correlate its symptoms. Management applications

can use dynamic code delegation to address temporal problems, like the detection of

2See [Bauer et al., 1993] for an analysis of the functional requirements of managing distributed

systems.
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intrusion attempts to a networked workstation.

3.1.1 Challenges of Distributing Management Functionality

The main problem that this chapter addresses is how to dynamically decentral-

ize network management functions. There are several technical challenges in develop-

ing an e�ective distributed management environment. First, a decentralized manage-

ment framework must enable applications to e�ciently bind management code within

the scope of each networked device. For example, delegated code must have direct

access to the underlying instrumentation of the device.

Second, the new framework must be properly integrated within the standard

management framework, so that existing applications and systems can interoperate

with it. For example, management applications should be able to communicate and

control the execution of delegated agents via snmp. Third, a mechanism is needed

to resolve non-deterministic management actions. For example, one manager may

delegate an action (A) to reboot a device when certain failure is detected, while

another independent manager delegated an action (B) to analyze the causes of the

fault. If A is executed �rst, B will not be able to diagnose the fault.

3.1.2 Advantages of Management by Delegation

mbd, in contrast with platform-centered management, supports a scalable

model of management. Automation of management functions via delegated appli-

cations software reduces the load on operations centers. mbd either eliminates or

signi�cantly reduces the need for intensive network polling, and therefore reduces the

largest scale impediment of snmp.

mbd can greatly improve the autonomy and survivability of distributed sys-

tems. Management responsibilities may be delegated to devices to maximize their

autonomy. For example, when communications are lost with the noc managing pro-

cesses, an mbd-server may activate management programs that provide its device with

fully autonomous management. Thus, an mbd application can better handle the large

management data rates involved during failures, and can directly access the control

functions at the devices. Delegated agents can continue to execute while there is a

network connectivity loss.

mbd reects performance tradeo�s driven by the realities of computing tech-

nologies. Networked devices are increasingly equipped with substantial computing

hardware resources. These computing resources permit a degree of distributed man-

agement sophistication which exceeds (or even contradicts) the simple device models

envisioned by the snmp paradigm.

mbd can inter-operate with current management protocols. It may also extend

their capabilities, e.g., snmp mib entries may be exibly programmable via delegated

scripts. For instance, an mbd-server can be used in conjunction with snmp managers

to solve the port-failure handling example of Section 3.0.2. A delegated diagnosis
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program can generate an event noti�cation and record its �nding in an appropriate

mib table. A manager can then access the snmp-agent incorporated within the mbd-

server to retrieve these mib variables. We implemented a mechanism to provide

concurrency control among concurrent management actions implemented as delegated

agents. Each delegated agent can be instantiated with an attribute which represents

a scheduling priority, and di�erent agent scheduling algorithms can be con�gured as

part of the mbd-server.

3.2 Application Examples

Several management applications have been implemented using the mbd model

and software. In addition to some demonstration applications that we developed,

groups at Aerospace, Harvey Mudd College [Erlinger et al., 1994], Smarts [Dupuy,

1995], and Synoptics, have used mbd code to implement several network management

tools. This section presents three examples3 of other network management application

domains that can bene�t from the functions supported by mbd. Section 3.2.4 describes

some of the common characteristics of management applications that require dynamic

distribution.

3.2.1 Intrusion Detection

A security threat is the potential for deliberate (1) unauthorized access and

manipulation of information, or (2) rendering of the system inoperable or unreliable.

An intrusion is a successful set of actions to carry out a security threat. Intrusion

detection is the ability of a computer system to automatically determine that a security

breach has occurred. Anderson [Anderson, 1980] identi�es three classes of malicious

users that perform security breaches: (1) masqueraders are system penetrators that

exploit a legitimate account, (2) misfeasors are legitimate users who participate in an

illicit activity, and (3) clandestines, who seize supervisory control of the system.

Intrusion detection mechanisms assume that an attack consists of some num-

ber of detectable security-relevant system events. Surveillance and auditing facilities

collect events such as remote logins and �le access denials. Enormous amounts of

audit data and computing resources are necessary for successful intrusion detection.

Simply recording all of the audit records results in a huge amount of I/O and stor-

age overhead. For example, if all audit events are enabled on a workstation, it can

generate several megabytes of raw audit records per hour that must be read and

analyzed.

Most intrusion detection systems use statistical analysis to measure variations

in the volume and type of audit data. Summary statistics detect when the number of

occurrences of an event surpass a reasonable threshold, which may indicate the pres-

ence of an intruder [Porras, 1992]. Pro�le based anomaly detection detects intrusions

3These examples were �rst presented in [Meyer et al., 1995].
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by monitoring audit logs for usage that deviates from standard patterns. Its main

advantage is that it does not require a priori knowledge of the security aws of any

given system. However, there are several issues that hamper the e�ectiveness of such

techniques, e.g., false positives and false negative rates. For instance, in some envi-

ronments, e.g., academic departments, anomaly use is the norm among many users,

producing a large rate of false positives.

Intrusion detection is an excellent candidate application for spatially decen-

tralized and temporally distributed management. Centralized processing for intrusion

detection won't scale up to large networked systems, and will require large amounts

of network bandwidth to move audit data to a centralized point. If all the audit data

is sent to a central location, it will result in signi�cant network congestion. Correla-

tion analysis must be performed on events in di�erent machines' local logs. Since the

computational requirements of intrusion detection scale in a worse than linear fashion
[Meyer et al., 1995], the audit processing must be kept distributed. Semantically rich

conversations are needed between the distributed monitors, as they may need to pass

relatively complicated structures that are hard to prede�ne in an mib. Surveillance

mechanisms must be adapted over time as new break-in modes are discovered.

3.2.2 Subnet Remote Monitoring

Consider the problem of evaluating the performance of a LAN segment. For

example, a manager may need to determine which stations are generating the largest

amount of tra�c on the segment, in order to redistribute the load. On a busy network,

such computations may require maintaining tables with entries for several thousand

nodes, along with their packet counts. To download an entire station table to the

central platform for processing is impractical. The entire transfer of the table could

easily take a long time, even minutes. By the time the table transfer is completed,

the performance data is likely to be obsolete and of little use.

A better approach is to distribute these computations to an mbd-server located

at a node in the corresponding LAN segment. Delegated agents may perform sorting

and other processing locally, and provide summary and table information to remote

managers via snmp. For instance, they may compute the top n nodes sending packets,

or an ordered list of all hosts according to the number of errors they sent over the

last 24 hours.

For example, assume that a centralized application needs to evaluate the top

n sending nodes of a given subnet. Assume that a sort will be performed based on

the number of packets transmitted by each station. The management station would

have to request statistics for all the hosts that have been seen on that subnet. The

management platform will need to get a baseline count for each station and one to

get the count for each station after a time t. The di�erence between the two sets

of requests is then sorted by the platform to produce the top n list. If instead a

decentralized approach is taken, the same function is delegated to an mbd-server, and

its aggregated costs are greatly decreased. Most or all of the computations happen
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at the LAN, and are therefore more e�ective.

The rmon mib [Erlinger, 1993] de�nes remote monitoring probes that collect

information from LAN segments. An rmon probe is a device that collects perfor-

mance data from a LAN segment and performs prede�ned calculations over that data.

In the rmon mib a limited spatial distribution of processing is used for the Host Top-

N function. The Host Top-N mib group provides sorted host statistics. A network

administrator can de�ne some of the parameters of the functions computed, e.g., the

data items selected (e.g., top 30), and the duration (e.g., 24 hours) of the data collec-

tion. Thus, rmon provides a set of generic functions that can be remotely instantiated

by network managers. Note that all the rmon computations have been pre-de�ned by

the corresponding standards group. Thus, the rmon mib does not support temporal

distribution of computations over mibs, as management applications can not de�ne

new types of calculations.

3.2.3 Controlling Stressed Networks

Network stress is loosely de�ned as the sustained operation of the network at

\high" utilization levels. Stress may be caused by failure of network components

and/or by high user demand. Characteristics of stressed networks include longer

delays, reduced e�ective connectivity, increased packet tra�c, unexpected routing,

and unpredictable responses. Stress must be dealt with quickly, because it introduces

instability that tends to escalate.

Networks in stressed conditions require di�erent management strategies than

unstressed networks. Management applications used for dealing with stressed net-

work regions must have local autonomy, stress containment, domain stabilization, and

gradual, graceful degradation [Meyer et al., 1995]. Management algorithms should

obtain most information locally at the devices, and only require low bandwidth to

communicate outside of their domain. If the source of a problem is local, the local

domain should be able to make decisions to contain and correct problems locally. Ide-

ally, local domains should be able to anticipate stress conditions before they actually

occur, and take appropriate countermeasures.

As network stress grows, management and network services should continue

to function, albeit with worse performance. This requires a spatially distributed ar-

chitecture, with few dependencies on remote resources. Stress monitoring involves

the correlation of mib variables (e.g., retransmissions, packet lengths, and timeouts)

on a domain-by-domain basis. By conducting cross-correlations on a regular basis,

patterns of stress could be discovered. Similarly, higher level managers would conduct

cross-correlations of domain-manager information, to establish \regional" stress prop-

agation. They could then devise and delegate the implementation of strategical and

tactical policies to combat escalating stress. All these activities require management

applications that are spatially and temporally distributed in a hierarchical fashion

among network domains. We elaborate on the above problems in Chapter 4.
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3.2.4 Centralized vs Distributed Management Applications

Di�erent management applications require or admit di�erent levels of distri-

bution or centralization. An application that needs fast real-time decisions based on

local device information will need decentralized control and intelligence. For instance,

an application that keeps vital monitoring devices of a nuclear reactor should be able

to perform its role even when the network is temporarily disconnected. Applications

that utilize large amounts of data may need to perform decentralized processing to

avoid overloading the platform and the network. In the other extreme, some appli-

cations must have a signi�cant component of centralized intelligence and processing.

For instance, consider an application that correlates global con�guration about all the

devices of a private network. Such an application can be more e�ciently implemented

in a centralized paradigm.

Polling Frequency

An example of an application that requires low levels of polling is a daily man-

agement backup control application. Such an application will retrieve every night a

few mib variables that ascertain if and when the last incremental backup was com-

pleted. Since these computations are based on slow-changing data, it is su�cient to

use snmp polling to collect the data. An example of an application that requires a

high frequency of polling is a data compressing index function (see Section 4.5). This

application depends on an ability to detect high frequency deltas on variables. The

need for proximity to management data and the frequency of polling dictates that

such computations be performed at the devices.

Management Information Throughput

This scale runs from a (1) high throughput/low information ratio to a (2) low

throughput/high information ratio. Checking the liveness of a device connected via

an 100 Mbps link via infrequent ping is an example of an application of type (1).

Performing remote diagnosis of a large site via a 9600 bps modem link is an example

of an application of type (2). Note that network throughput is a�ected not only by

the amount of bandwidth available but also by the reliability of that bandwidth.

Semantically Rich Conversations

Some applications require semantically simple and infrequent conversations.

For instance, an application may need to retrieve daily a few mib variables for con-

�guration backup purposes. Other applications need semantically rich and frequent

conversations between manager applications and devices. For instance, an application

may need to engage in a detailed diagnostic procedure every few minutes for some

critical device. For instance, diagnosing failures in a controller device at a nuclear

reactor may requires several hundred exchanges, following some expert system if

rules. This is an example of a semantically rich and frequent conversation. The more



77

semantically rich the conversation is, the more it requires temporal distribution of

management code.

Decentralized Applications

Decentralization is most appropriate for those applications that:

� have an inherent need for distributed control,

� may require frequent polling or computation of high frequency mib deltas,

� include networks with throughput constraints,

� perform computations over large amounts of data, or

� have a need for semantically rich conversations between platform processes and

device servers.

Centralized Applications

Not all management computations must be distributed. For instance, consider

an accounting application that performs device inventories, e.g., counting the number

of atm interface cards in user workstations. Since these computations are based on

slow-changing data, it is su�cient to use snmp polling to collect the data. Other com-

putations must be centralized. For example, consider an application that needs to �nd

the least loaded ethernet segment to install a new device. To make this decision, the

application needs to correlate performance data obtained from many segments. An-

other example is an application that displays an updated network connectivity map.

Both examples are centralized because they need to merge and correlate information

from several sources.

Spatial centralization is appropriate for management applications that have

little inherent need for distributed control. Such applications (1) do not require fre-

quent polling or high frequency computation of mib deltas, (2) have high throughput

bandwidth connecting the manager station and its devices, (3) exchange relatively

small amounts of data, and (4) do not need frequent, semantically rich conversations

between manager stations and device servers. Many network management applica-

tions in use are centralized, because the centralized (snmp) paradigm is the only one

that is ubiquitous. Therefore, most �rst-generation network management applications

�t the above characteristics. The classic example of such �rst-generation application

is the display of simple mib variables, e.g., an mib browser. Monitoring a router's

interface status or a link's up/down status involves querying and displaying the value

of a single or small number of (mib) variables.
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3.3 Design and Components of mbd

The example of handling failures at a remote hub (in Section 3.0.2) illustrated

some of the problems of performing a management task using current network man-

agement approaches. Let us describe how such a task may be implemented within

the mbd framework. First we need an elastic process at the remote hub, which is an

mbd-server that implements network management functions. This process allows del-

egated agents to directly monitor and control the resources of the managed element.

For instance, the mbd-server may support a function that evaluates events such as the

symptom_event by monitoring the low-level hub registers associated with its ports.

A management application may delegate an agent that dynamically binds with the

existing management services code at the mbd-server. Therefore, the entire manage-

ment control loop happens inside the hub device. Such dynamic extensibility and

control of the functions performed by the managed device reduces or even eliminates

the micromanagement problem described earlier.

mbd-servers maintain fast communications with the managed devices, often by

sharing the same host computer with them. Therefore, the network access delays

are replaced by bus or register access delays. An mbd-manager is a management

application process that delegates management agents (dps) to the mbd-server. These

agents implement management tasks, i.e., they instruct the mbd-server how to monitor

and how to respond to what it observes. An mbd-server can also be an mbd-manager,

i.e., it can delegate management functions to another mbd-server.

A Sample Scenario of MbD

Figure 3.6 depicts an example scenario of a distributed management applica-

tion that uses mbd. An mbd-manager, d, in host D is using rds to transfer a dp to

an mbd-server in host A. For instance, this dp could be a program similar to that

described in Figure 3.4. The mbd-server is executing four agent threads which have

been previously delegated, dpi1�4. The dpis communicate using the rds SendMsg

and rds ReceiveMsg. An external client process, c, executing on host C, also uses

rds communication services to exchange data with the dpis in the mbd-server. dpi2
is delegating a dp to the mbd-server in host B. dpi4 is accessing management services

provided by the mbd-server, For instance, it may be accessing a service to translate

computed values into the required format for snmp.

mbd-server Roles

An mbd-server can be a proxy snmp-agent because it can access device data

on behalf of remote management applications, and present it to them via snmp. For

example, the mbd-server can collect diagnosis data on ports and save the observed

data on an mib. This feature is described in more detail in Section 3.4. An mbd-server

is also a hierarchical mid-level manager that executes management code on behalf of

remote applications. An mbd-server exports a dynamically changing set of services to
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Figure 3.6: Delegation to an mbd-server

external management processes. For example, the delegated management code in the

above example can become a new service for remote applications. The mbd-server also

provides a con�gurable collection of management services for the dpis that execute on

its address space. For instance, these services may include local access to mib data,

access to snmp services, device instrumentation routines, and so forth. An example

of these services is given in Section 3.3.3.

3.3.1 Delegated Management Programs

A manager can delegate to a router device a dp to evaluate some statistic

(e.g., the mean) of a mib counter variable. From this dp, several dpis can be in-

stantiated to compute the same statistic function for di�erent mib variables, e.g.,

ipInHdrErrors, ipInAddrErrors, etc. The dpis execute in the environment of the

management data and functions that they need to access. The responsibility of com-

puting these operators on management data is, therefore, dynamically shifted to the

devices themselves.

A typical dpi will perform certain initialization steps, request services from

the mbd-server, and then wait for some event. For instance, a dpi will wait for

instructions from a remote manager, or wait until a timer expires. A dpi will not poll
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for messages, and will implicitly yield the cpu when waiting for a message. Most of

their time is typically spent in a suspended state, resting between bursts of activity.

They periodically collect information, analize it, and possibly take some action as a

result.

For example, an noc management application may need to know every time

that n or more datagrams are discarded in a short period t due to errors in its ip

header. A dpimay be instantiated to locally observe the corresponding mib-ii counter

ipInHdrErrors. It will receive a message via rds ReceiveMsg() from a manager to

indicate the value of the increment (n) and the time period (t). Whenever the value

of ipInHdrErrors increments by n or more, the dpi will send a message to the

corresponding manager via rds SendMsg(). Thus, a dpi takes the role of evaluating

local events directly from the device, and forwarding to the manager application only

the reports that it needs.

An mbd-manager may control the execution of a dpi using rds. For example, a

manager may instantiate a dpi that computes statistical values of a given mib counter

variable. This dpi may send a report message to the manager process every time that

it discovers an anomalous condition. A dpi may start sending more messages than

its manager can handle at a given time, due to some abnormal condition. The mbd-

manager may then suspend and later resume this evaluation and reporting using the

corresponding rds services. Execution control via suspend/resume enables both the

mbd-server and the mbd-manager to dynamically reallocate cpu cycles and bandwidth

for urgent purposes.

3.3.2 Observation and Control Points (ocps)

dpis interact with managed entities via mbd-server threads called Observation

and Control Points (ocps). An ocp provides an Application Programming Interface

which is used by the delegated agents to interact with the managed entites. For exam-

ple, consider an mbd-server executing in a modem pool of an Internet service provider.

Each modem is represented by an ocp that implements modem management services.

For instance, a service such as hangup() to force the modem to drop a connection is

implemented as a low-level modem-speci�c protocol that sets the internal registers of

the modem. For di�erent types of modes, the implementation of each service is likely

to be di�erent, but those details are hidden by the common service interface of the

ocp.

In general, an ocp's service interface provides an encapsulation abstraction

that hides many of the details of the entity-speci�c monitoring and control access

protocol. ocps may also be delegated agents, hence they provide a programmable

interface to managed entities. An ocp can also provide an arbitrary concurrency

control mechanism to regulate the access of delegated agents to the shared resources

of a managed entity. For instance, the above ocp may serialize all the requests that

involve setting the registers of the modem. ocps provide granularity of access control,

e.g., a given dpi can obtain bindings to a speci�c ocp but not to others. An ocp may
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also perform services by invoking an external interface of managed object. Consider

an mbd-server at a �le server computer. An ocp may monitor statistics of the tcp

connections of the host by invoking an O/S speci�c command (e.g., netstat). The

ocps can locally store the values observed or computed, thereby caching frequently

used information.

Figure 3.7 shows several delegated agents (dpis) and ocps executing inside an

mbd-server. ocp1 provides an interface to the managed device F . It collects data

from F using a device-speci�c protocol, and exports an interface called FP . ocp2 is

itself an mbd-manager which has an rds session with an mbd-server at host B. ocp3
is an snmp-agent that is serving snmp requests from (1) an snmp manager, e, at host
E, and (2) from dpi4. Notice that this ocp supports an snmp mib. The other dpis

use rds to communicate between themselves, with ocps, and with remote processes.

3.3.3 Prototype Language and Services

The �rst mbd-server prototype supports delegated agents written on ANSI C
[ANSI, 1989]. C is ubiquitous, supports low-level facilities, and has e�cient implemen-

tations. The prototype mbd-server restricts the capability of a delegated management
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mbd SNMPclose() mbd SNMPgetCounter() mbd SNMPgetEnum()

mbd SNMPgetInteger() mbd SNMPgetPort() mbd SNMPgetString()

mbd SNMPgetVector() mbd SNMPopen() mbd SNMPsetCounter()

mbd accept() mbd check from ent() mbd check mesg()

mbd check mesg from() mbd create entity () mbd delete all con�g()

mbd entity name() mbd entity complete() mbd entity status()

mbd error str() mbd exit() mbd get from()

mbd get from ent() mbd get mesg() mbd get ptr()

mbd get ptr from() mbd id for() mbd id for new()

mbd init dmp() mbd insert con�g () mbd io id for()

mbd kill entity() mbd lookup ent name() mbd my entityID()

mbd my id() mbd name for() mbd name for new()

mbd new entity() mbd parent entity() mbd parent id new()

mbd perror() mbd register me() mbd remove entity()

mbd resume entity() mbd send mesg() mbd send ptr()

mbd send ptr to() mbd send to() mbd send to ent()

mbd set ent priority() mbd set error () mbd set error info ()

mbd set health () mbd set health info () mbd set load ()

mbd set load info () mbd sock close() mbd sock readv()

mbd sock recv() mbd sock recvfrom() mbd sock recvmsg()

mbd sock send() mbd sock sendmsg() mbd sock sendto()

mbd sock writev() mbd sockbind() mbd sockbindlisten()

mbd sockconn() mbd suspend entity() mbd templ name for()

mbd templ name for new() mbd terminating() mbd thr alive()

mbd thr change quantum() mbd thr count() mbd thr dead()

mbd thr enumagt() mbd thr enumerate() mbd thr enumrecv()

mbd thr enumsend() mbd thr getstate() mbd thr instantiate()

mbd thr kill() mbd thr libcset() mbd thr resume()

mbd thr set priority() mbd thr sleep() mbd thr suspend()

mbd thr status() mbd thr status new()

Table 3.1: Prototype mbd-server allowed functions
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agent to invoke arbitrary external functions. They may only invoke external functions

that are made explicitly available in a con�guration �le. A sample set of these func-

tions is presented in Table 3.1. This list de�nes an api for delegated agents to request

services from the mbd-server. The api includes functions to control the scheduling

execution of threads, exchange messages with other agents, ocps, and mbd-managers;

and receive noti�cations of events. Notice that this list is a con�guration option for

each mbd-server, that is each incarnation of an mbd-server can have a di�erent list,

and the list can be changed during execution.

3.3.4 Controlling the Execution of Management Agents

Consider an mbd-server to whom two management tasks have been delegated

by two di�erent managers. Assume that both of these agents share the same \trig-

gering" event E, i.e., they are waiting on the same event. When E occurs, these

management actions are executed, and their execution order may result in substan-

tially di�erent results.

Example: Concurrent Management Actions

Consider an X.25 controller within a switch. The controller has an mbd-server

responsible for the controller operations, which are mostly Virtual Circuits (VC)

operations. Management applications have delegated three agents, D1, D2, and D3,

to the mbd-server. All Di are to be triggered upon the event E = bu�ers-full (i.e., all

VC bu�ers are full):

� D1 is delegated by a vendor-provided switch manager, and speci�es the fol-

lowing: run local diagnostics to check possible link or controller failures, then

reboot the controller upon fault.

� D2 is a congestion handler delegated by the network control center that speci�es:

evaluate and report performance parameters, abort some VCs, and set limits

on local resources usage.

� D3 is a ow-control action pursued by network ow-control protocol acting in

a manager role. It speci�es: dump bu�ers contents and reset ow-control on

VCs.

This example illustrates typical forms in which non-deterministic management

actions distributed through networked systems can lead to unpredictable results. This

unpredictability can be attributed to three factors: (1) the arbitrary order of the ex-

ecution of actions, (2) the division of work between local and remote management

functions, and (3) the interactions between them. The arbitrary order of execution

of several actions that are triggered by common events introduces management prob-

lems.
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In the above example, any order of execution pursued in applying the three

actions will lead to very di�erent behaviors. If D1 is executed �rst, the controller may

be rebooted. When D2 then evaluates the performance parameters it would sample

and report to the global manager values that report the state of the device after re-

initialization. These are likely to be di�erent values than those that would be reported

by executing D2 �rst and then D1. As a result the controller may pursue unobservable

intermittent failures as it reboots and fails again. Global management applications

which expect reporting through D2 will never be noti�ed about the problem.

Concurrency Control in MbD

We have implemented a mechanism to provide concurrency control among

delegated agents. Each agent can be instantiated with a numeric attribute which

represents a priority property. For instance, di�erent priorities can be associated

with di�erent management applications, or management stations. These properties

are used by the dbm scheduler to resolve execution conicts in a deterministic fashion.

The mbd-server attaches this priority attribute to the internal representation of each

delegated agent.

The original dbm Scheduler (described in Section 2.3.4) implements a pre-

emptive round robin scheduler. Two additional preemptive scheduling policies were

implemented to control nondeterminism of management actions: Wait Wound and

Wound Die. Wait Wound is non-exclusive. Delegated agents with lower priority will

wait for those with higher priority before being scheduled. Agents of the same pri-

ority will execute concurrently. Wound Die is exclusive. Only one delegated agent

can access a managed object at the same time. Agents with lower priority will be

terminated when they are in conict with a higher priority agent.

In the above example, scheduling priorities could be associated with the dif-

ferent manager entities. For example, the switch manager has the lowest priority,

the ow control center has a slightly higher priority, and the control center has the

highest priority. Thus Priority(D1) < Priority(D3) < Priority(D2),

3.4 MbD Integration with SNMP

3.4.1 Extending an SNMP-agent

mbd can inter-operate with and extend current network management protocols,

such as snmp. This integration allows standard management applications to bene�t

indirectly from mbd's extended functionality. Figure 3.8(a) shows the structure of a

typical snmp-agent. It includes an external interface that supports the snmp proto-

col, the implementation of an mib, and the instrumentation to obtain data from a

real device. Figure 3.8(b) shows an mbd-server that augments the equivalent snmp-

agent. For example, an mbdSNMP process may implement an snmp-agent as an ocp

thread. Using the mbdSNMP , a manager process can dynamically delegate agents that
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Figure 3.8: Extending an snmp-agent

implement new interfaces, new mib extensions, and new instrumentation functions.

The following examples illustrate the bene�ts of integrating mbd with snmp.

3.4.2 Delegating via SNMP

An snmp manager process can use snmp requests to delegate an agent to the

mbdSNMP . The snmp manager invokes GetNext(private.mydmp.location.row), to

obtain a reserved mib table row. The mbdSNMP will then allocate the row and return

to the manager the row index, e.g., 1234. The manager will then use this table row

index to identify the delegated agent in the mbdSNMP . For instance, the manager will

invoke

Set(private.mydmp.location.1234, ``grande.cs.columbia.edu:/tmp/mydmp.c'').

The mbdSNMP will interpret this command as a request to delegate the corresponding

agent code (/tmp/mydmp.c). The mbdSNMP will then use a �le transfer protocol (e.g.,

tftp [Sollins, 1992]) to retrieve the agent code from its location (grande.cs.columbia.edu).

Example: A Delegated Management Agent

Consider a management task that (1) detects a symptom of a fault, (2) per-

forms some test to evaluate its type, (3) noti�es the noc manager console, and (4)

executes a preventive action, e.g., partitions the ports that have failed. A skele-

ton program that performs this task (shown earlier in Section 3.0.2) is given in

Figure 3.9. The entire procedure can be delegated at boot time to an mbd-server

that executes at the device. An agent thread can be instantiated via an snmp Set

from a simple snmp application. For example, in the above example, an snmp
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void

correct_problem() {

int sympttype, i;

if (symptom_event(&sympttype) == PROBLEM) {

while(i=0;i<num_ports;i++)

if diagnostic_test(port[i], sympttype)

partition_port(port[i]);

}

}

Figure 3.9: A Delegated Management Agent

manager will use a Set command on a variable of the corresponding row, e.g.,

(private.mydmp.location.instantiate.1234) to create a new instance of the del-

egated agent. The device will then assume autonomous responsibilities to handle

port failures. Communications between the platform and the device occur during

delegation time and at agent instantiation, but not a single data exchange is required

during stress time.

Example: MbD can Support MIB Filtering

An mbd-manager may delegate an agent that implements a �ltering algorithm

over an snmp mib. This agent can use local services to store the �ltered values in

an mib table. This table can then be accessed by remote snmp-managers, using

Get-Next to retrieve an ordered collection of �ltered values. Filtering is one of the

distinctive capabilities of cmip (see Section A.5) which is not present in snmp. In

cmip, a �lter is a Boolean expression consisting of assertions (equality, ordering,

presence, or set comparison) of attributes of managed objects. mbd extends snmp to

support data �ltering using arbitrary functions. An extended example of �ltering is

given in Section 5.3.1.

Agents can interact via snmp

Consider, again, the previous example. Let us assume that policy constraints

require that a human operator control the decisions to partition the ports of a hub

from an snmp console. This requires a split of the original program into two delegated

agents. The �rst one will generate speci�c snmp Traps to the snmp console, and is

shown in Figure 3.10. The notify() operation is implemented as an snmp trap that

informs the snmp console of the current condition. These traps can then be used to

invoke appropriate Gets of port failure table entries, indicating which ports are in

trouble. Operators can then make the decisions concerning the partitioning of ports
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void

local_correct_problem() {

int sympttype, i;

if (symptom_event(&sympttype) == PROBLEM)

notify(manager_id, sympttpe);

}

Figure 3.10: A fault-detection/noti�cation program

by setting anmib variable that represents the partition port procedure. Setting this

mib variable to j will cause the invocation of partition port(j). Chapter 5 presents

several examples of interoperation between snmp managers and mbd applications.

3.4.3 mbd Interoperability

The same integration that we demonstrated for snmp could be done for other

management protocols, e.g., cmip. Therefore, mbd enables network management

systems to e�ectively extend the capabilities of their current frameworks. Contrast

this exibility with current mibs which only provide rigidly prede�ned data. mbd

allows management applications to obtain the data that they are really interested in.

We elaborate on this subject in Section 4.3. For example, the rmon mib permits

remote con�guration of pre-programmed monitoring processes. mbd permits delega-

tion of monitoring processes dynamically and the recording of the values which they

compute within appropriate mib variables. For instance, mbd enables programmable

versions of monitoring variables, such as those prede�ned in the rmon mib.

3.5 MbD vs Centralized Management Approaches

This section compares the network management paradigms of mbd and those

of centralized standard approaches. For illustration purposes, snmp is used as a rep-

resentative network management protocol. The discussion, however, is equally valid

for cmip, since these limitations result from the very paradigm that they share rather

than from design features speci�c to each protocol. The section examines some of the

performance problems which are intrinsic to network management applications. We

compare the performance of an application using snmp and mbd. We compare snmp

and mbd with respect to several problems related to scalability, reliability, resource

constraints, and semantic heterogeneity. These problems are illustrated by examples

that are germane to the realm of network operations and system management. How-

ever, note that these problems are instances of generic problems that apply to many

other types of distributed systems and applications.
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void

diagnose_and_partition() {

int i;

while(i=0;i<num_ports;i++)

if (SNMP_Get(port.diagnostic[i]) == FAILURE)

SNMP_Set(disconnect_port[i]);

}

Figure 3.11: A Management Program Example

3.5.1 Performance

We illustrate the performance characteristics of mbd by comparing the per-

formance of a management application using snmp to the performance of the same

application using mbd. Consider the problem of diagnosing port failures in a network

hub, and disconnecting malfunctioning ports.

Figure 3.11 presents a skeleton implementation of a centralized port diagnostic

procedure. Every invocation of diagnose and partition requires a minimum of n =

num of ports snmp Get requests. Let us assume that m of the ports are diagnosed as

failures. The program therefore needs m Set requests for the disconnection actions.

For simplicity, let us assume that all snmp messages have the same delay. The overall

response time cost function for this snmp interaction can be approximated by

Tsnmp = (n+m) � (tN (snmp)) + tmgr + tmib:

Here tN(snmp) represents the network delay of each snmp message, tmgr represents

the local computational time of the manager process at the noc host, and tmib rep-

resents the time spent by the snmp-agent mib at the hub. The cost of each snmp

request depends on the following factors:

(1) The time required to generate an snmp request message in asn.1.

(2) The delay of the request message from the manager to the snmp-agent.

(3) The time required by the snmp-agent to generate a response message in asn.1.

(4) The delay of the request message from the snmp-agent.

(5) The time required by the snmp-manager to parse the response message.

Consider an mbd implementation of the same example. The code of Figure

3.11 becomes an agent that is delegated to an mbd-server executing at the hub, with

cost Tdelegate. Now the invocations of the snmp Get and Set actions are bound to local

routines that can access the snmp mib. An invocation of diagnose and partition()

requires now only one network interaction. After delegation, the typical response time

cost function for this mbd interaction can be approximated by

TMbD�request = tN(request) + (n+m) � tlocal(ocp) + tMIB:
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In this formula, tN(request) is the invocation request, which is very likely to be smaller
than tN (snmp). (n+m) � tlocal(ocp) represents the n+m local requests to diagnose

and correct the ports. We have now moved the network-polling of the diagnostics

to be a local computation on an ocp executing at the hub device. Thus, the delay

associated with accessing the mib is very small, i.e., tlocal(ocp) << tN(snmp). Of

course, we still need to amortize the initial cost of delegating the agent,

Tdelegate = tN (delegation) + tMbD(integration):

Here, tN (delegation) is the time required to transfer the delegated agent code, and

tMbD(integration) is the time required for compiling and linking it into the mbd-server.

The residual performance di�erence after delegation is

Tresidual = Tsnmp � TMbD = (n� 1 +m) � (tN(snmp)) + �:

For instance, if there are n = 16 ports in the hub, and only one has a problem, m = 1,

Tresidual is equivalent to 16 snmp requests, and a very small �.

Performance Evaluation

Let us assume that there are 32 ports in the hub (n = 32), and that none of

them are having a fault (m = 0). Let us assume the following values (in ms) for the

snmp cost equation tmib = 30 and tmgr = 10. Each snmp message (tN(snmp)) adds a

delay of 5 ms on a LAN and 100 ms on a WAN. An snmp application could combine

several requests into one snmp message, so we assume that 8 requests can �t in one
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snmp message. Then the total time required for one program invocation using snmp

is

Tsnmp = (32=8) � tN (snmp) + 40 = 4 � tN (snmp) + 40;

and for i invocations,

Tsnmp(i) = i � [4 � tN(snmp) + 40]:

The total time required for one program invocation using mbd is TMbD =

Tdelegate + TMbD�request. Let us assume the following values for it: tN(delegation) is
10 ms on a LAN and 200 on a WAN. tN(request) is 5 ms on a LAN and 100 ms on

a WAN. tMbD(integration) is 100 ms, and tlocal(ocp) = 1ms. Then,

TMbD = tN (delegation) + 100 + tN(request) + 32 + 30

and for i invocations,

TMbD(i) = i � [tN (request)] + tN (delegation) + 162

The actual performance of such an application is inuenced by system pa-

rameters, such as the speeds of the cpus of the platform and device hosts and the

network bandwidth and delay. For simplicity, let us assume that the snmp-manager

and the mbd-server hosts are equivalent in cpu performance. In addition, the av-

erage load on these resources should be taken into account. Figure 3.12 illustrates

the performance comparison between mbd and snmp in a LAN and Figure 3.13 in a

WAN. The di�erences in total delay are larger for a WAN, because of the increased

latency. In a WAN it takes 2 invocations of the program to fully amortize the initial

cost of delegation, while in a LAN it takes 5. Of course, this amortization will be

much faster for applications that require larger amounts of device data.
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3.5.2 Scalability

Platform-centric network management systems do not scale up to large net-

works. An snmp manager process may interact with a large number of snmp-agents.

Each snmp interaction involves retrieving and analyzing mib data. This interaction

pattern has two characteristics: (1) it concentrates most processing into the man-

ager's host computer, and (2) it entails a high degree of communications involving

the manager's host. Because of this centralized interaction pattern, snmp establishes

implicit scale limitations. A networked system becomes unmanageable when there

is an increase in the number of managed devices or when there is an increase in the

number of managed variables that their mibs support.

Example: SNMP Polling

Consider an snmp application executing on a dedicated management station

that manages a set of point-of-sale registers connected by a LAN. The management

station polls each register via snmp to retrieve its operational state. There is a

limit on the maximum number of variables that can be polled and the frequency of

polling. The maximum number of registers that the management station can handle

is bound by the length of the polling interval divided by the time required for a single

poll request. For supermarket point-of-sale registers, a reasonable polling frequency

is every 10 seconds [Eckerson, 1992]. The maximum tolerable delay will be much

lower for many real-time applications (e.g., nuclear reactors), and higher for others

(e.g., printers). In a Wide Area Network, larger delays will make the number of

snmp devices that can be queried an order of magnitude lower. A similar example is

described in more detail in [Ben-Artzi et al., 1990].

Example: Moving Large Tables

Consider a future atm switch providing services to several thousand video-on-

demand subscribers. The network management system must keep large tables of atm

entities that need to be processed from time to time. For instance, each port would

have an entry in the corresponding mib table for con�guration changes. The noc

platform hosts will typically be located at a signi�cant distance from the switches.

Retrieving such large tables using snmp is very ine�cient. Moving the entire table to

the noc hosts to search for a few ports is very wasteful of both network bandwidth and

platform host cpu cycles. Because of the platform-centric paradigm, data analysis is

conducted only at the noc. Thus, it requires data access and processing rates that do

not scale up for large and complex networks. Platform applications may be unable to

sustain the required level of communications to maintain an accurate representation

of the real-time mib information. Nor will they be able to a�ord the computing cycles

required for data processing and presentation in the management station.
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Human intervention

Scalability is even more seriously bound by the rates at which operators can

handle data and alerts. As more data is collected and processed, more failure symp-

toms are detected and displayed on consoles. Operators' consoles become ooded

with unimportant and/or redundant information. Many management applications

produce alerts for trivial events. For instance, when users go home for the day and

turn o� their desktop computers, red lights go o� on management consoles. Impor-

tant event noti�cations (e.g., a �le system is down) are often delayed and temporarily

lost in a sea of alerts at the noc. The task of the operators that interpret these

symptoms becomes increasingly more taxing as the network grows. Furthermore, \A

critical problem facing operations managers today is the scarcity of trained person-

nel" 4. If the data collected could be interpreted by software applications instead of

human operators, this problem would be simpli�ed. Platform-centered management,

however, establishes signi�cant barriers on the development of such applications.

MbD is Scalable

Instead of bringing data from the devices to platform-based applications, an

mbd-manager delegates parts of the management applications to the devices. For

example, an operations management center can delegate management functions to

an mbd-server at a switch, programming it to execute certain tests at a given time, or

upon discovering a given event. An noc host is relieved from polling by delegating

agents to the network switches to monitor and detect network failures. The switches

can invoke other delegated programs to isolate and handle a speci�c failure, without

unnecessarily involving the delegator.

Automation of management functions via delegated applications software re-

duces the load on operations centers. Since the management data is interpreted at the

mbd-server, the monitoring demands on human operators are signi�cantly reduced.

mbd applications can exibly control the granularity of their platform-device inter-

actions, and thus they can avoid micro-management. mbd supports the composition

of primitive management actions in a exible and e�cient fashion. In summary, mbd

either eliminates or signi�cantly reduces the need for intensive network polling, and

therefore reduces the largest scale impediment of snmp.

3.5.3 Management Failures and Reliability

Consider a network failure that involves several LANs. During such a failure,

centralized snmp applications will tend to increase the rates of data access at the

remote devices. This will happen at a time when the network is least capable of

handling the excess load. The data collection rates required by the applications may

easily exceed the bandwidth available. A bandwidth-demanding snmp application

4Rick Sturm, Communications Week, October 23, 1995.
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may be unable to perform under such limitations. The rates at which management

data must be tracked by the platform may exceed its processing capacity.

The time scale over which the behaviors of such networks need to be monitored,

and management actions invoked, is too short. The centralized control inherent in

snmp can cause network instability, due to the time length of the control loop. A

control loop starts at the time that an event occurs at the device, continues when the

central application realizes that there is a problem, and completes when the device

receives instructions to handle the problem. Such feedback loops will tend to oscillate

more severely as the feedback time increases.

The platform-centered approach is, therefore, signi�cantly limited in its ability

to handle the failures arising in large-scale internets. An snmp application could

neither handle the enormous data rates involved, nor access the control functions

at the devices fast enough. The average management response-time will tend to

stretch. The likelihood of management failures will increase, due to delay or even loss

of management communications, at a time when fast and reliable response is most

needed. Management applications will perform worst when they need to perform

best.

Platform-centric management produces failure-prone communication bottle-

necks. Since the platform host contains most management functions, it is rendered

most vulnerable to network failures. Even simple failures could load the managers'

bandwidth and cycles, potentially bringing it down. If the platform host is down or

overloaded, devices cannot accomplish recovery, as they must wait for instructions

from the platform application. Thus, even a minor problem may potentially lead to

an avalanche failure of the entire network management system.

Some networks may often experience both short-term and extended periods

of interrupted connectivity between the management platform and managed devices.

The central-platform paradigm becomes almost useless during such periods. Under

stress conditions, platform-centered management requires increased access to device

agents in order to handle failures. Such increased accesses may worsen the network

stress and accelerate failures. Decreasing network reliability will also cause loss and

delay of platform-agents interactions, leading to potential failures of the network

management system.

MbD Improves the Autonomy and Reliability of Managed Devices

mbd can greatly improve the autonomy and survivability of distributed sys-

tems. As the network grows, or involves more complex devices, management re-

sponsibilities may be delegated to devices to maximize their autonomy. Devices may

acquire autonomous management capabilities, conditional on the network status. A

device can use the status of its environment to instantiate appropriate management

programs, reecting di�erent levels of autonomy. For example, when communications

are lost with the noc managing processes, an mbd-server may activate management

programs that provide its device with fully autonomous management.
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An mbd application can better handle the large management data rates in-

volved during failures, and can directly access the control functions at the devices.

Delegated agents can continue to execute while there is a network connectivity loss. In

networks where management communications bandwidth is scarce, device autonomy

can be increased. In high-speed networks where fast reaction is needed, an mbd-server

responsible for such control functions may be located in close proximity to the man-

aged elements. Delegation and instantiation of agents may be conveniently scheduled

(e.g., for device initialization time) leaving only minimal communications for stress

times.

3.5.4 Resource Constraints

The type and quantity of computational resources available for management

purposes varies greatly among networked devices, depending on the limitations of

each device's hardware. Small devices, like modems, will typically o�er very limited

computational capabilities for management purposes. Mobile devices may have lim-

ited computing resources due to their power consumption and storage limitations.

In contrast, a telecommunications switch or a �le server are more likely to allocate

much larger computing resources for management. Large, general-purpose devices like

workstations computers can invest more substantial computing resources to support

extensive manageability.

Administrative Restrictions

Administrative policies may impose other restrictions in the allocation of man-

agement resources. For instance, a security policy may prescribe the use of strong

encryption on devices located at speci�c sites. Also, the type and amount of re-

sources available for management of a given device may vary over time. For instance,

a telecommunications switch may allow a larger amount of memory for management

tasks at o�-peak hours. Any device may provide a larger amount of resources for

brief periods of time for speci�c purposes. For example, a host being exposed to a

penetration attack will allocate resources in order to track down the intruder.

Device Capabilities

Current management standards lack any e�ective mechanism to di�erentiate

between the management capabilities and resources of di�erent devices. The varia-

tion of management capabilities among various devices creates conicting interests

between di�erent constituencies. For instance, whenever a new management feature

is proposed, there are many types of devices which cannot a�ord to allocate su�cient

resources to support it. This conict has lead the network management community

to many non-conducive debates over the feasibility and relative cost of any proposed

management feature. Frequently, the only common ground found for standardization

is at the lowest possible common denominator. In other words, network management
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standards tend to underestimate the resources available at managed elements. Be-

cause of this, inexpensive resources embedded in network elements are not e�ectively

used for management.

Some network devices commit substantial processing resources to management.

In some cases, they may exceed the proportional share of resources available to them

at the noc hosts. Thus, management data is often moved from an embedded de-

vice through the network to be processed at a platform host where it must compete

for lesser resources. For example, a Synoptics hub concentrator is equipped with a

dedicated sparc cpu for management purposes. If a network device is equipped

with signi�cant computing resources, it is more e�cient to allocate a fraction of these

resources to process the data locally rather than to move it. Platform applications

occasionally need some of this data, for instance, to correlate observations from mul-

tiple devices. But it is more often the case that the platform merely retrieves the data

from a given device and processes it by device-speci�c applications. For instance, an

application would retrieve private mib variables from a Synoptics hub, and then use

a Synoptics speci�c application at the noc host to evaluate the data.

Resource Constraints in MbD

mbd applications can be tailored to the computational resources available

at each networked device and at particular times. An mbd-server for a resource-

constrained device can be con�gured to accept only certain types of delegated agents,

i.e., those that take into consideration resource constraints. For instance, the mbd-

server of a modem would only allow delegated agents that can monitor the modem's

registers, and maybe perform some arithmetic computations with them. mbd appli-

cations can allocate management functions to the devices according to current ad-

ministrative policies. For instance, delegated agents can be used to execute security

log analysis at o� hours.

Performance Tradeo�s

Networked devices are increasingly equipped with substantial hardware re-

sources (e.g., hubs incorporate powerful risc cpus). These computing resources

permit a degree of distributed management sophistication which exceeds (or even

contradicts) the simple device models envisioned by the snmp paradigm. The costs

associated with noc operations dwarf those involved in procuring additional hard-

ware resources within devices. Therefore, it is cost e�ective to procure devices with

su�cient resources for distributed management. These technological and economic

factors contribute to dramatic changes in the nature of emerging and future networks.

In such networks, a distributed, device-oriented management paradigm is more ex-

ible, scalable, and less expensive than the centralized, static management paradigm

represented by snmp.
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3.5.5 Critical Evaluation of Standards Management Models

While standardization resulted in signi�cant advances in network management,

manageability requires more than means to query network devices. The standard

management frameworks are essentially \data-movers". The standards de�ne proto-

cols to move data around, instead of de�ning how to process the data. Management

data travels from a source to a destination, and little gets done with it.

Current management systems pursue a platform-centered paradigm. This

paradigm separates management applications, logically and physically, from the data

and services that they need. Platform-centric frameworks allocate almost all respon-

sibilities to the manager applications executing at the platform. Distributed man-

agement applications are implemented following a traditional Client/Server (C/S)

process interaction paradigm. The C/S paradigm associates functionality with de-

vice servers rigidly. A client process in a manager role can only invoke a �xed set

of prede�ned services. These services cannot be modi�ed or expanded without the

recompilation, reinstallation, and reinstantiation of the server process.

For example, snmp-agents are device-based servers that perform only menial

tasks, e.g., collecting device-related data. The services provided by any snmp-agent

have been strictly de�ned by standards. Their mibs have been rigidly de�ned at

their design time. snmp-agents collect device management data and provide a query

interface for remote manager applications. The platform-centered paradigm, there-

fore, introduces a wedge that separates these applications from the the devices that

they need to control. This rigid division of functionality hinders the development of

e�ective management systems.

The explicit assumption of the snmp framework is that network elements can

not a�ord the computing resources needed to be \intelligent". Thus, they must rely on

the centralized smarts of the platform-based applications. This paradigm assumes a

primitive networked environment, where devices lack resources to execute non-trivial

management software. Since devices have limited computing resources disposable for

management purposes, their servers should be very simple and perform only minimal

duties.

In the days of glass-house environments, network devices were indeed resource

poor. Also, management data and functions were relatively simple, and organizations

could devote su�cient personnel to handle operations. Within modern heterogeneous

networked systems, however, many (or most) new devices incorporate signi�cant and

ever growing processing resources. At the same time, management data and functions

are much more complex, and the human resources needed for operations are scarce

and expensive.

Over time, the cost of device equipment will continue to decline as it is driven

down by a commodity market. In contrast, the additional cost of operations are

driven up by growth, distribution, and heterogeneity. The circumstances, premises,

and problems associated with manageability in such environments are signi�cantly

di�erent than those envisioned by the platform-centric approach.

The above management models establish barriers to e�ective network and
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system management of modern distributed environments. mbd seeks to address these

limitations, and is orthogonal to the choice of methods to collect, organize, or access

managed data at agents.

A Comparison of mbd and snmp

Table 3.2 summarizes the di�erences between the snmp and mbd paradigms.

Model mbd snmp

Function Allocation Dynamic distribution Static De�nition

by Application developers Standards bodies

Analysis and Control Spatial Distribution Centralized

at devices platform

Devices are intelligent dumb

resources are abundant limited

Management tra�c overhead minimal high - polling

Network failures autonomous devices devices need platform

continue operation yes limited

MIB de�nition Dynamically extensible Fixed and prede�ned

Interaction platform-device �ne grain, adjustable micro-management

Device instrumentation local access via network

Real time constraints device bound network bound

Table 3.2: mbd vs snmp Comparison

3.6 Conclusions

mbd provides a simple model to dynamically compose management systems,

by connecting and integrating independent delegated agents. Designers and vendors

of network devices can provide libraries of prede�ned management routines that can

be used to compose these management systems. Network managers can use these

libraries and their own programs to build distributed multi-process management ap-

plications. An mbd-server provides a exible way for network managers to execute,

con�gure, and control this open-ended set of management programs in close proxim-

ity to the managed devices. By reducing the length of the control loop, management

applications gain much faster response time and reliability. mbd is an e�ective tool to

dynamically allocate management tasks responding to the vicissitudes of networked

environments.
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4

Evaluating the Behavior of Managed

Networks

4.1 Introduction

The global behavior of a network domain is de�ned by the aggregation of

the behaviors of all its element components. Large network domains can have tens

of thousands of elements which interact via many protocols (e.g., TCP/IP, SNA,

NetBios), over di�erent connection fabrics (e.g., Ethernet, Token Ring, FDDI). The

behavior of each network element is characterized by a large number of local indica-

tors, some of which can be found in their mibs. A typical router mib, for instance,

can have several thousand variables representing its routing tables, interfaces, and

so forth. Many behavior indicators are functions over these mib variables that are

computed by management applications. For instance, a network utilization func-

tion is computed by an application that uses input values retrieved from several mib

counters.

In this chapter we present an aggregation of indicators model for abstracting

the behavior of a network. This model is applied to the design of a management

application that evaluates the state of an Ethernet network. Complexities that are

similar to those of network management occur in other large systems, like market

economies. The behavior of a stock market, for instance, is characterized by index

functions like the Dow Jones average. Such indexing typically uses linear aggregation

of a large number of variables, each providing a di�erent microscopic measure of the

system's state. Notice that such aggregation uses statically de�ned algorithms for its

index functions, i.e., the de�nition of each index is stable for long periods of time. We

apply a dynamic aggregation model to characterize the behavior of networks, using

mbd. Computed indexes reduce a large number of observed operational variables to

a few simpler indicators of the system state that indicate important trends. The

de�nition of each index function is dynamically delegated, and hence may change as

frequently as network conditions require it.
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Observation and Analysis of Networks

Many network management functions require real-time observation and analy-

sis of the behavior of network elements. For instance, error rates at the communication

links are computed in order to discover fault and performance problems. The net-

work behavior is de�ned by thousands or even millons of variables that change rapidly.

Therefore, the observation and analysis of the combined behavior of a network is a

very di�cult task.

Management applications need to use the observed information collected to

resolve network problems. Such applications would need to make e�ective decisions

based on vast amounts of real-time operational data. These decision processes are

operators that compress network observation data input into a simpler decision out-

put.

In current management frameworks, however, most of the data compression

needed to evaluate management decisions is accomplished through manual processes.

That is, network operators visually analyze the raw mib data presented by an mib

browser to determine its meaning. Given the explosion of standard and vendor-

speci�c private mibs, and the increasing number of managed entities in each network,

this manual task is extremely di�cult. Developing e�ective technologies to compress

management data at its source is, therefore, a central problem of network manage-

ment.

Example: A Network Storm

Many network management problems are caused by complex interactions be-

tween the many components of distributed systems. For instance, consider a database

server which maintains multiple tcp connections with remote clients. Assume that

some of these connections pass through a particular T1 link. Suppose that a long

burst of noise disrupts this link distorting several T1 slots. Frames traversing the

link will incur many bit errors and will be lost. Link layer protocols will then invoke

automatic frame retransmissions. If the noise is sustained, the retransmissions will

overload the interface cards of the di�erent hosts. This will eventually cause timeouts

at the higher network layer, leading to tcp connection resets, and yet more retrans-

missions. Eventually, such a situation may cause a network \storm" scenario, i.e.,

the rapid escalation of cascading failures.

This example illustrates some of the di�cult problems and complex interac-

tions involved in managing distributed systems. Complex faults, as in the above

example, often escalate in space and time. To handle such faults, management ap-

plications need to correlate observations from di�erent network layers. For instance,

they need to correlate the behavior of the tcp entities at the transport layer with

the error rates at the link layer. For instance, if the noise is repeated or sustained, a

management application may quickly modify the routing tables of intermediate nodes

to avoid using the faulty link. Such applications need to be spatially distributed to

enable real-time reaction to such problems. Some applications also need a central-
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ized management process that concentrates on correlating the global observations

performed by the distributed processes.

Observation Problems

The symptoms of complex network faults as in the above example, are often

di�cult to observe and to correlate. For instance, sometimes the faulty link is part of a

leased network connection which is managed by another organization. It is usually not

practical to continuously poll across network domains to retrieve potentially useful

data. Furthermore, mibs provide only partial approximations and sometimes even

erroneous indications of the actual state of a device. The observed behaviors at the

mib are separated by the network from the locus of the applications computations.

Network polling for mib data results in delay, loss, and replication of values. snmp

applications must use observations that are prede�ned and hard-coded as part of

the snmp-agent at the device. Using remote delegation, network polling errors and

perturbations can be signi�cantly reduced and sometimes even completely eliminated.

Management Decisions

Network faults are often determined through threshold decisions. For instance,

when the error rate in input packets exceeds a certain threshold, this may indicate a

signi�cant problem in the underlying medium. A management decision can disconnect

a port on an Ethernet hub when its error tra�c load exceeds a given threshold. Often,

a number of indicators must be simultaneously considered in deciding how to handle a

symptom. For instance, on a shared medium like Ethernet, excessive error rates may

result from collisions due to a normal increase in tra�c load. If only the error rate

observation is considered, an application may overreact to the problem. A myopic

decision of disconnecting the port may cause an even worse problem.

A Formal Model for Behaviors and Observations

Developers of management applications need a formal model and notation to

properly describe and understand the behaviors of managed entities. Such a model

should elucidate the roles of the di�erent entities and computational processes in-

volved in management computations. For instance, we need to di�erentiate between

(1) the actual behavior of a device which is experiencing a problem, (2) the symp-

toms of the problem as seen by the observations computed by an mib, (3) the remote

observations of mib variables performed via a management protocol, and (4) the

computations performed by applications at the platform host.

This chapter introduces a formal model and its corresponding notation to

describe the sample behaviors of managed entities and their observations by man-

agement applications. This model elucidates many of the shortcomings of current

network management paradigms. In particular, we examine the observations of man-

aged entities that are computed by snmp mibs, and characterize their problems and
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limitations. The static approach of standard network management platforms to col-

lecting data of managed entities wastes computing resources in observations that are

not used by any application.

Index Functions for Compressing Management Data

A health function is an index function that combines real-time management

data from composite observation operators to reach management decisions. Man-

agement applications may use these operators to make real-time decisions, e.g., to

diagnose and correct element failures. We describe the design, implementation, and

demonstration of a management application that uses such operators to provide a

health index for a network. Observation operators must be adapted as (1) more

knowledge about the network behavior is acquired, (2) the network resources and its

usage policies evolve, and (3) as the expertise of the network human operators im-

proves. Diagnostic procedures and corrective actions may be dynamically delegated

as a result of an event. For instance, if the level of an Ethernet utilization becomes

too high, the application may identify the device which is the source of most tra�c

and temporarily disconnect it from the network.

Current network management paradigms do not support the temporal distri-

bution and spatial decentralization required to compute real-time health functions

e�ectively. Health functions cannot be prede�ned as part of a static mib, as they

may vary from site to site and over time. Nor can they be usefully computed at

centralized management platforms, since this can result in excessive polling rates,

lead to errors due to perturbations introduced by polling, and miss the very goal of

compressing data maximally at its source. Therefore, we use the mbd approach to

implement the health observation operators.

Chapter Organization

Section 4.2 introduces a formal notation to describe the behaviors of managed enti-

ties, and their observations by management software.

Section 4.3 describes some of the problems of computing observation operators using

snmp.

Section 4.4 describes management decision and correlation processes.

Section 4.5 describes index functions for compressing real-time management data.

Section 4.6 describes the design and implementation of an mbd application that

monitors and controls a LAN.

Section 4.7 summarizes the chapter and presents some conclusions.
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4.2 Behaviors of Managed Entities

Management applications require observation data to understand the actual

behavior of the managed entities. This section introduces a formal notation to specify

the behaviors of managed entities (e.g., devices) and their observations by manage-

ment applications. The use of a formal notation elucidates some of the distinctions

between di�erent types of management computations. We use this notation to de�ne

management operators that monitor and control managed entities.

4.2.1 Managed Entities

Let � denote an arbitrary managed entity of a networked device. For in-

stance, � may be the Ethernet interface card of a given workstation. The current

state of � is de�ned by a �nite set of externally observable variable attributes, i.e.,

State(�) = f�1; �2; :::; �ng. For example, �1 may denote the length in octets of the

last frame received at the interface. A variable may also represent a control routine

of the managed entity which can be externally invoked by some interaction. For in-

stance, �2 may represent an error reset routine that can be invoked by the networked

device. Such routines are typically invoked via a private control protocol between the

networked device and the interface card over the internal bus.

4.2.2 Sample Behavior

Let x = �j denote an arbitrary managed entity attribute of �. A sample

behavior of x is a sequence X = f[tx(n); x(n)]gn. Here tx(n) denotes the time at

which the n-th change in the state of x occurs. The state of x may change through an

event such as a sample computation or communication of � that involves the variable

x. x(n) denotes the value of x after the n-th change.

For example, x� may denote the length in octets of the last ip frame received

at a given interface (�), and n counts frame arrival events. Suppose that a sequence

of ip frames arrives at � with the following lengths:

x�(n) = f345; 567; 779; 678; 333; 456; 322; 234; 378:::g:

Figure 4.1 shows the plot of the sample behavior X�. X� is a sample behavior of the

arrival of these ip frames to �, e.g.,

X� = f[1; 345]; [3; 567]; [8; 779]; [13; 678]; [17; 333]; [21; 456]; [23; 322]; [30; 234]; [34; 378]; :::g

Note that in this example, the attribute x is a scalar value, but in general, x may be

a vector of entity attributes.

The notation X(n) = [tx(n); x(n)] denotes the instantaneous value of the sam-

ple behavior X associated with the n-th change. In the above example, X�(n) is a

pair that includes the timestamp of the n�th ip frame and the number of data octets

in that frame. For instance, X�(2) = [3; 567]. To associate behavior values with a
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Figure 4.1: A Sample Behavior of IP frames

given time � , we de�ne nx(�) = maxfnjtx(n) � �g. nx(�) is the ordinal number

of the most recent event occurrence prior to time � . For instance, nx�(10) gives the
number of ip frames that arrived before � = 10, which in the above example is 3.

4.2.3 Observations of Sample Behaviors

Observations of sample behaviors are de�ned by sequence operators that com-

pute a function over the behavior's history. For example, the total number of data

octets arriving at an interface � via ip integrates the sample behavior over X� up to

a given point in time. The initial history of a sample behavior X up to time � is

X� = f[tx(1); x(1)]; [tx(2); x(2)]; :::; [tx(nx(�)); x(nx(�))]g:

An observation of a managed entity variable x is a computable functionalF [X t; t] = y,

where y is the value observed. An observation operator computes a sample behavior.

For example, given the above sample behavior, the following is an observation of it

by an arbitrary operator Z:

Z(X�) = f[1; 345]; [8; 779]; [13; 678]; [21; 456]; [34; 234]; :::g

An observation process is given by a mappingF : f[tx(n); x(n)]g 7! f[ty(n); y(n)]g
where y(n) = F [X ty(n); ty(n)]. Let Y be an arbitrary observation operator. If the

time of the k-th observation of Y is ty(k) and the value observed is y(k), then the

sequence f[ty(1); y(1)]; [ty(2); y(2)]; :::; [ty(n); y(n)]g represents the sample behavior of

the observations. Figure 4.2 displays the original sample behavior and an observa-

tion process sample behavior. Notice that there are several ip frames that are not
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observed, i.e., the observation misses them. The following sequence is computed by

an observation operator Y, over the sample behavior X� de�ned above.

YZ(X�) = f[4; [1; 345]]; [11; [8; 779]]; [15; [13; 678]]; [22; [21; 456]]; [36; [34; 234]]; :::g

Sample behaviors are often observed via observation operators that are cu-

mulative counters. Sample observations over counters lose less information, (e.g.,

the timing of the changes), since the counters aggregate the data. The mib-ii vari-

able ipInUnknownProtos, for instance, counts (modulo 232) \the number of locally-

addressed datagrams received successfully but discarded because of an unknown or

unsupported protocol" [McCloghrie and Rose, 1991]. A counter of X may be de-

�ned as C(X t) =
P

j�nx(t)
x(j). Thus, if U(x(n)) is de�ned as 1 when the protocol is

unsupported or unknown, and 0 otherwise, then ipInUnknownProtos �
P
U(x(n)):

Operators can be De�ned Recursively

Y = CX can also be de�ned recursively via

ty(n) = tx(n); y(n+ 1) = y(n) + x(n+ 1):

The �rst part means that the counter is updated (observed) at times when x changes,
and the second part de�nes the counter values recursively. In a similar manner,

derivatives of behaviors may be de�ned recursively. For example, Y = EkX is a

moving average observation over a window (number of events) of length k, and is

de�ned by

ty(n) = tx(n); y(n) =
X

n�k<j�n

x(j)=k:



105

4.2.4 Generic Observation Operators

Many observations depend only on the temporal aspects of a behavior X and

are, therefore, generic. Let us consider a few examples (in all cases ty(n) = tx(n)):

� Y = NX is de�ned by y(n) = n and measures the total number of events.

This observation is approximated in snmp mibs by counters.

� Y = AX is de�ned by y(n) = tx(n)� tx(n� 1) and measures the interarrival

time for x(n). For example, A(ifInErrors) measures the time between errors

in interface input packets.

� Y = RX is de�ned by y(n) = 1=[tx(n) � tx(n � 1)] and measures the rate of

events arrivals. For example, R (ifInErrors) measures the input error rate of

a given interface.

Observation operators may also be composed to produce new observations.

For example, EkAX provides the average interarrival time of X over a window of

length k.

4.3 MIB Observations

4.3.1 Deriving MIBs as Observations of Behaviors

Each mib de�nes the data that it makes accessible to applications via a man-

agement protocol. Consider a real managed entity � with a sample behavior X�. An

snmp-agent applies an observation operator Y =M� to produce the value of an mib

variable M�X�. For example, consider a router device �, with an attribute variable

x�;i that denotes the number of octets in the output queue of the i interface card.

The snmp mib-ii [McCloghrie and Rose, 1991] variable ifOutQLen is computed by

an observation operator that observes the length of such an output packet queue.

An mib is, therefore, a set of managed entities observations f�1; �2; �3; :::g,

where each �i is de�ned by an observation MiXi. Some of the �i are de�ned by ob-

servations over attributes that are constant or change very infrequently. For instance,

the mib-ii variable ipForwarding indicates if the device is acting as a gateway or not.

Such an attribute is unlikely to change frequently. Most interesting attributes like

ifInOctets do change rapidly.

Example: Sampling a Counter

In snmp, observations of operational variables are accomplished via counters

and gauges. A counter represents a cumulative (integral) of an operational variable.

Typically, however, only the change in the counter value provides a useful indica-

tion of the network state. For example, the mib-ii counter variable ifInOctets
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(ifOutOctets) counts modulo 232 the total number of bytes received (sent) by an in-

terface since the initialization of the device. The rate at which these counters change

is a useful indication of load on a network segment. Notice that counters may wrap

around 232. For instance, ifInOctets can wrap around in a minimum of 3.5 seconds

for a sonet OC-192 interface at 10 Gigabits per second. Therefore, observation op-

erators may need to perform very frequent samplings of the sample behaviors of some

managed entities. Obviously, it will be very taxing for any host to sample the sonet

frames at such speeds. Therefore, mib observations will only provide approximations

to the real sample behavior of such managed entities.

4.3.2 Observation Operators Introduce Delays

The delays associated with the mib observation operatorM will vary depend-

ing on several factors. If the mib is located at the same host where the managed entity

resides, this delay can be relatively low. For instance, an snmp agent may implement

M via direct retrieval of operating system kernel data structures, by accessing shared

registers or shared memory. However, if the managed entity changes frequently, the

local host will not be able to evaluate M at a high enough sampling rate to capture

the complete sample behavior.

Observation Sampling

Consider X! = f[t1; x1]; [t2; x2]; :::; [tn; xn]g; a �nite real sample behavior at

time !. M will produce an approximation, MX! = f[ti1 ; xii]; [ti2 ; xi2 ]; :::; [tik ; xik ]g.

The number of elements (n) in the sequence X! is signi�cantly larger than that of

MX!, (ik). That is ik = jMX!j < jX!j = n. If M is applied too infrequently,

some of the changes in the sample behavior X may be lost, and therefore the sample

behavior of the entity � may only be partially observed in the mib. The quality

of such approximations depends on mib implementation decisions. For instance, an

snmp agent may invoke theM operator at a prede�ned frequency for some variables

and only upon receiving an external request for others.

Proxy Agent Example

As another example, an mib can be implemented by a \proxy agent" which

observes managed entities at remote devices. In this case, M is itself bound by the

behavior of the network resources needed to observe a remote managed entity. Proxy

snmp-agents, in particular, may need to poll remote devices over slow communication

links to observe managed entities. For example, an snmp-agent may be a proxy for

a remote modem that does not support snmp. The polling delay of M may be

signi�cant when compared with the required frequency of observation sampling for

a real-time diagnostics application. The polling delay behaves as a random variable

due to the behavior of network resources, e.g., phone link errors. Therefore, proxy

sampling can introduce a substantial error in the observation of M.
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4.3.3 Management Applications Compute Observations

Consider generic observation operators like interarrival timeA or event rateR,

which were de�ned in Section 4.2.4. For instance,R is useful to compute the error rate

of frames arriving at a given interface, e.g., R(ifInErrors). Such generic temporal

observation operators are not computed in snmp's mib-ii. The snmp approach is

that such observation operators should be derived by management applications from

other mib variables by polling observations and arithmetic computations.

Only by polling the mib-ii variable sysUpTime can a manager obtain an ap-

proximate clue regarding event arrival times. sysUpTime is an observation operator

that can be used as a substitute timestamp for sample behaviors observations1. For

example, at any moment, the value of the pair [sysUpTime, ifOutQLen], represents the

last instantaneous value of the sample behavior de�ned by the length of the interface

queue.

Temporal observations may only be approximated by snmp polling. Manage-

ment protocols like snmp support a polling operator P to bring observed data from

the mibs to their platforms. Therefore, mib data access by noc management appli-

cations can be described as the composition of the respective operators, fPM�X�g.

Management Applications Compose Observations

Computations by management applications often apply additional operators to

these polled values, say fUPM�X�g: An application may compute long term statis-

tics of mib variables and use them to compare the current behavior of the network. For

instance, a management application may collect a daily sample behavior observation

of the load on a network segment, by computing U1P(ifInOctets + ifOutOctets).

U1 may perform a standard deviation computation that is used to analyze periodic

trends. For example, a LAN segment may become daily loaded at 3AM due to �le

system backups. An application may de�ne another operator, U2 that compares the

current sample behavior with an historic benchmark, to discover anomalous behaviors.

Thus, U2 will realize that the 3AM peak utilization does not require the generation

of an alert message.

The observed behaviors at the mib are separated by the network from the locus

of the applications computations. In other words, fM�X�g is typically computed at

close proximity to the managed entity �, while the application computations U are

typically computed at centralized noc hosts. In snmp, a polling operator P is used

to bridge this spatial separation. Since polling introduces observation perturbations,

the �delity of the U computations may su�er. For instance, in the above example,

the benchmark statistical computations may be polluted by polling errors or delays.

1sysUpTime measures the time in hundredths of a second since the network management portion

of the system was last re-initialized.
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Polling Observations Introduce Perturbations

Let us analyze the reasons for polling perturbations. Let Y = PX denote the

observations produced by the polling operation over X. Ideally, the polling operator

P should provide a perfect approximation to the identity observation operator I, i.e.,

IX = X. However, P is seldom identical to I. Only for observations of sample

behaviors that do not change. For instance, an mib variable like sysDescr represents

a �xed attribute, the description of the device, that does not change unless the mib

is recon�gured. P will di�er from I for most \interesting" observations, i.e., those

which have non-trivial sample behaviors.

Delay, Loss, and Replication

Polling results in three kinds of perturbations of the sample behavior being

observed: delay, loss, and replication of values. Observations have delays which may

depend on many independent factors, such as network tra�c, the load on the server's

host, and so on. Some of the original values may be lost when polling is not performed

frequently enough to track changes in x. Polled values may also be lost due to network
errors. Indeed, some management protocols (e.g., snmp) use non-reliable transport

protocols (e.g., udp) to convey management data. Furthermore, when polling times

are too frequent, the same values of x may be polled, resulting in duplication. Such

duplicate values may skew the computations of statistics over the sample behaviors.

As a result of these perturbations, a polling operator P may retrieve a sample behavior

sequence that substantially di�ers from the ideal observation operator I.

4.3.4 Static mibs Waste Resources

mib implementations de�ne the collection of observations M a priori and in-

dependently of their use. We call this a static approach to the collection of device

operational data. Since the need for operational data cannot always be predicted,

many observations are collected and stored for potential access by management ap-

plications. This results in the collection of large amounts of data that may never be

used.

In most mibs, applications can not control the execution of the observations

M. For instance, an mib at a device may execute the observation of its interfaces at

prede�ned intervals of time, say every 10 seconds. Thus, the exact meaning of the

operator fM�X�g depends on the mib implementor's design decisions. Some device

agents may allow a startup setting of the frequency of observations. Still, they do not

allow remote management applications to dynamically modify this frequency to suit

their needs.

One may ask, how good is the static observation paradigm in supporting the

computations of network decisions? There are two major problems of concern regard-

ing this paradigm: (1) the rigid de�nition of mib objects and (2) the use of polling

to access management data.



109

mib Objects are Rigidly Prede�ned

Observational resources are statically allocated to collect information that may

never be used. Relevant, useful new observations cannot be dynamically added. Thus,

applications must compute approximate observations, which may have signi�cant er-

rors due to mib implementation decisions. For example, mib-II variables capture error

observations via counters, e.g., ifInErrors. Let X denote the behavior captured by

an error counter. The error arrival rate is given by the observation Y = RX, where

ty(n) = tx(n); y(n) = [x(n)� x(n� 1)]=[tx(n)� tx(n� 1)]:

Since the mib only records the values of x(n), the values of tx(n) are not directly

observable. Note that it is possible to approximate tx(n) by polling sysUpTime.

For example, the interface input error rate can be approximated as:

E = �ifInErrors = �sysUpTime:

However, sysUpTime may di�er from the time at which the errors occurred, and when

the mib variables were last updated. This is likely to happen if the agent is acting as

a proxy. Thus, error rates and similar observations cannot be computed directly, but

must be approximated.

Polling Perturbs Management Computations

A second problem is that of computing linear decisions based on complex

observations obtained via polling. Even if all the behavior variables accessed by a

management function were available in an mib, it is still necessary to apply polling

over the network to retrieve them to a manager which can compute H. Since, in

general, PH 6= H, the perturbation introduced by polling corrupts the values available

to compute H. Limitations on the maximum rate of polling and the randomness in

polling delays restrict the computations of management decisions. Moreover, they

may result in management applications taking wrong decisions, or not taking action

when required.

For example, security management applications use mib variables to monitor

transport connections. To track which remote systems access resources via tcp,

for instance, tcpConnTable can be used [Leinwand and Fang, 1993]. An intruder,

however, may need only a brief connection to gather information. If polling does not

occur within this period, the record of the intrusion may be lost, and management

actions will not be taken.

4.3.5 mbd Provides Control of Prede�ned Observations

mbd addresses the limitations of static observations by providing dynamic con-

trol of observations. An mbd-server supports the dynamic control of prede�ned ob-

servations, and their dynamic composition and con�guration. In contrast, snmp
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applications must use observations that are prede�ned and hard-coded as part of the

snmp-agent at the device. Using delegation, network polling errors and perturbations

can be signi�cantly reduced and sometimes even completely eliminated. Observation

processes may be invoked and terminated via rds thread control operations. This

enables mbd applications to control the allocation of device resources to observa-

tion tasks. Applications can exibly monitor device behaviors according to their

interests, without wasting computing cycles and network bandwidth on unnecessary

observations. New observation operators can be dynamically de�ned and delegated

as requirements evolve.

4.4 Threshold Decisions and Observation Correla-

tions

Management applications use decision processes to trigger actions in order to

handle management problems. Network management decisions may be described as

Boolean functions de�ned over the universe of management observations. Such func-

tions may need to compress large amounts of real-time observations. For instance,

a fault management application reacts to a device fault by performing some correc-

tive action, e.g., rebooting the device. To reach the correct decision on real-time,

the application needs to compress large sample observations, �ltering out irrelevant

samplings, and extracting the problem indicators which are relevant to a particular

fault.

4.4.1 Faults can be Detected by Threshold Decisions

Network faults are often detected through threshold decisions. A threshold

decision is de�ned by a Boolean function of management observations,

D : fUPM�X�g 7! fYes;Nog:

For instance, when the error rate in input packets exceeds a certain threshold, this

may indicate a signi�cant problem in the underlying medium. A management ap-

plication may decide to disconnect a given port on an Ethernet hub when its error

tra�c load exceeds a given threshold. In this case, � is the Ethernet port, X� is the

actual sample behavior of errors on �, M� is the observation of this sample behav-

ior as computed by the corresponding mib variable at the hub, P is the observation

operator implemented by the snmp protocol, and U is the management application

computation that evaluates error rates and takes action to correct the existing prob-

lem.

Inputs to Decision Processes

Often, a number of indicators must be simultaneously considered in deciding

how to handle a symptom. For instance, on a shared medium like Ethernet, excessive
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Figure 4.3: Utilization and Error Rates Domains

error rates may result from collisions due to a normal increase in tra�c load. If only

the error rate observation is considered, an application may overreact to the problem.

A myopic decision of disconnecting the port may cause an even worse problem. To

avoid such problems all the relevant indicators should be used as inputs to the decision

process. In this case both the error and utilization rates must be input.

Linear Decisions are Fast to Compute

A linear weighted measure is an e�cient method to combine managed variables

in a threshold decision. For example, consider ~x = (x1; x2; :::; xk) as a collection of

managed variables involved in a decision. A simple linear index function h is de�ned

by the scalar product h(~x) = ~w � ~x =
P

1�i�k wixi, where ~w = (w1; w2; :::; wk) de�nes

a set of weights corresponding to each observation. Such an index function is an

aggregate measure of network behavior. Linear decisions are particularly attractive

for providing fault indications which can be used as input to global index functions.

A linear threshold decision is de�ned by h+ = f~xjh(~x) = ~w � ~x � 0g. Values of ~x in

h+ de�ne exceptional events possibly indicating symptoms of problems2.

Error and Utilization Rates Example

An index function h (possibly vectorial-valued) de�nes an observation over

behaviors X as Y = HX where ty(n) = tx(n), and

y(n) =

(
1 if h(x(n)) � 0

0 otherwise

2Decisions of the type h(x) = ~w � ~x � h0 may be easily reduced to the case above by considering

h0 = ~w0
� ~x0 where ~w0 = ((w1; w2; :::; wk; h

0) and ~x0 = (x1; x2; :::; xk ;�1).
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The operator H results in a value 1, whenever the values of x fall within the

unhealthy domain h+. When the observed behavior X wanders into the unhealthy

region, it may be necessary to invoke appropriate management procedures to handle

potential problems.

Let x1 denote the input error rate and x2 the utilization rate associated with

a given interface. An index function that correlates utilization and error rates may

be de�ned as follows.

H =

8>>><
>>>:

0 x1 < e1
h1(x1; x2) e1 � x1 < e2
h2(x1; x2) e2 � x1 < e3
h3(x1; x2) e3 � x1

Error rates lower than e1 are considered insigni�cant. An error rate in the

ranges de�ned by e1 and e2, for example, is considered signi�cant if the utilization

rate is lower than h1(x1; x2). The domain where faults are indicated is bounded by

3 linear functions as depicted in �gure 4.3. The fault indication region is de�ned by

the intersection of the half-planes decided by each of these index functions. In other

words, if h � (h1; h2; h3), the fault indication domain is h+ = f~xjh(~x) � ~0g.

Sustained and Intermittent Problems

Sometimes management actions need to be invoked only when unhealthy be-

havior is sustained for a period of time, or when it is repeated intermittently. For

example, a device may contain operational control mechanisms that provide tem-

porary relief from sustained problems. For instance, an ethernet interface card will

perform an exponential back-o� when confronted with collisions. Thus, intermittent

problem indications may arise.

To avoid spurious alerts, a threshold excess must be sustained over a su�ciently

long time window. For example, a hysteresis mechanism should be implemented to

limit the generation of alarms. If the observed unhealthy behavior uctuates, an

alert should not be generated. These temporal problem indicators may be captured

by appropriate observation operators applied to the output of the H observation.

Sustained problems, such as unhealthy behavior for a period of duration �, may be

detected by Z = PY where

z(n) =

(
1 y(j) = 1 for ny(ty(n)� �) � j � n

0 otherwise

Applying then Z = PHX will provide observations of sustained unhealthy behaviors.

4.4.2 How to Classify Weights to De�ne Index Functions

Index functions depend on local administrative policies, and must be adapted

to each installation site. Fault indications, for instance, may vary for each network

type (e.g., token-ring or ethernet), installation (e.g., educational or military), and
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time period (e.g., morning or night). Index functions need to be properly established

to reect these di�erences. To de�ne an index function requires computing the linear

weights ~w used in threshold decisions. This de�nition can be done manually by the

network administrators, and it could be assisted by the use of some software. Research

work in arti�cial intelligence has dealt with this problem, e.g., pattern classi�cation

and perceptron training. The following paragraphs briey outline some of their main

characteristics.

Pattern Classi�cation

Pattern classi�cation programs often combine several features of a given stim-

ulus in order to determine its category [Rich and Knight, 1991]. It is often di�cult to

know a priori how much weight should be attached to each feature. One way of �nd-

ing appropriate weights is to begin by using estimates, and let the program modify

the settings. Good (poor) predictors should have their weights increased (decreased)

until correct classi�cations are achieved. Similar learning techniques have been used

for game playing programs, e.g., Samuel's checkers [Cohen and Feigenbaum, 1981].

There are several issues that must be addressed for this type of technique. Among

them, (1) when and by how much to adjust the values of ~w, and (2) when to add,

delete, or replace any of the basic terms of the function, e.g., a xi.

Perceptron Training

The problem of computing ~w, can be considered an instance of the problem

of perceptron training [Duda and Hart, 1973]. A number of known algorithms may

be used to train such a linear function. The Least Mean Square (LMS) algorithm,

for example, adapts the weights after every trial, based on the di�erence between

the actual and desired output [Cohen and Feigenbaum, 1981]. The single layer per-

ceptron model is appropriate when computing linearly separable regions. Multi-layer

perceptrons are needed for complex cases, e.g., when decision regions can not be sep-

arated by a hyperplane [DARPA, 1988]. In a more general scenario, multiple index

functions may be simultaneously employed, each providing indications of di�erent

possible problems. Threshold decisions for these functions can be combined using

multi-layer perceptrons.

4.4.3 Correlations Between Observations

Example: Storm of Noise Leads to Retransmissions

Let us consider a network storm fault scenario, i.e., the rapid escalation of

cascading failures. Consider a database server which maintains tcp connections with

remote clients over a T1 link. Multiple tcp connections are multiplexed into the

T1 slots. Suppose that a long burst of noise disrupts the link garbling T1 slots.

Frames traversing the link will incur bit errors with high probability and will be
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lost. Logical link level protocols above the T1 layer will then invoke automatic frame

retransmissions.

The burst of signal-level link noise is translated by higher layer protocols into

a burst of retransmission tasks. The interface processor serving retransmission tasks

will have its queue overloaded. This can potentially lead to the processor thrashing.

Higher layer transport entities will time out on delays in the responses. These time-

outs will cause a burst of corrective activities (e.g., reset connections). Again, a

lower layer burst of exceptional processing is translated into a higher layer burst. In

summary, protocol stacks tend to propagate problems up to entities at the higher

layers and through the network. This propagation can lead to rapid escalation of

faults.

Suppose that an application observes the bit error rates at the physical level

(ifInErrors), the size of the interface queue at the link level (ifOutQLen) and the

rate of tcp connections reset (tcpEstabResets) at the transport level. These ob-

servation processes are depicted in �gure 4.4. The behavior of the link-level queue is

correlated with error rates occurring sometime earlier. Similarly, the rate of connec-

tion resets is correlated with the length of the link-level output queue.

Correlations are not Observed in MIBs

The storm escalates through the formation of temporal-spatial correlations

among behaviors at di�erent layers and locations. However, as noted in previous

sections, the real sample behavior of such processes is typically not observed. In-

stead, snapshots representing integrals of changes (accumulated through counters)

are collected in mibs. For instance, in �gure 4.4, the error count collected in the mib

represents the area under the error rate curve.

To properly diagnose the condition of the network such correlations should

be detected. To observe these correlations, a management application must �rst

compute the appropriate sample observations (error rates, transmission resets), and

then evaluate the correlations between them. For example, the correlation between

two sample observations may be measured as a function of their covariance.

Thresholds are Used to Identify Faults

Threshold detection processes may sometimes hide the relationship between

correlated events. For example, a management process may detect a threshold for the

e�ect (tcp resets) but not for the cause (frame errors). Events may also be reordered

in time. For instance, a management application may detect an e�ect event via a

threshold function that is computed over a longer interval than that of the causal

event. Threshold detection may cause correlated observations of unrelated events,

e.g., via detection of spurious samples. Threshold events detection may complicate

the correlation of observations, leading to incorrect diagnostics and inappropriate

management actions.
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Example of Threshold Decorrelation Problem

Assume that for a given network router, queue length excesses are detected

with greater sensitivity than link error rates. An alert on queue length may be

generated without its corresponding error-rate alert. Such an alert may be analyzed

under the incorrect assumption that error rates are normal. This may lead to the

wrong conclusion regarding the source of the problem. In general, many alerts may

be generated by a single fault, rendering the identi�cation of the �re that caused the

smoke very di�cult. Sometimes, the smoke may result from the observation process

itself, not from a real �re.

Faults Across Domains are Di�cult to Detect

Networks may be operated by separate organizations, each responsible for a

di�erent domain. For example, a leased T3 link is managed by a telephone com-

pany, while the layers above it are operated by an academic institution. The network

administrator of the academic institution may be unable to observe the sample be-

haviors of the link layer elements. Similarly, the telephone company operators may

be unable to observe the behaviors of higher layer entities in the end user domain.

Thus, faults escalating across domain boundaries are particularly di�cult to detect.

Section 5.3.3 presents a detailed example of management correlation across adminis-

trative domains.

MbD Helps the Evaluation of Correlations

Complex faults as those illustrated above are characterized by fast uctuations

in their observed symptoms. Such faults are di�cult to observe and hence are di�-

cult to correlate. Their symptoms provide only partial and sometimes even erroneous

indications of the network state. Fault and performance management applications

require an analysis of such observations to identify their causes. Section 4.3 showed
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that observations and interpretation of behaviors are arduous to perform using a

centralized paradigm of network management. Therefore, systematic fault and per-

formance management are di�cult to achieve and are mostly ine�ective. Spatial and

temporal distribution of the observation operators and their interpretation is needed

to overcome these problems.

4.5 Index Functions for Compression

A distributed system needs to support e�ective management decisions based

on vast amounts of real-time operational data. These decision processes are opera-

tors that compress sample behavior observations into a simpler decision. In current

network management frameworks, much of the compression needed to evaluate man-

agement decisions is often accomplished through manual processes at the noc. That

is, network operators must visually analyze the raw mib data presented by an mib

browser and determine its meaning. Given the explosion of standard and vendor-

speci�c private mibs and the increasing number of managed entities in each network,

this manual task becomes extremely di�cult. Developing e�ective technologies to

compress management data at its source is, therefore, a central problem of network

management.

One method of compressing operational data is to compute index functions,

reducing a large number of observed operational variables to a single indicator of the

system state. This is similar to the use of indexes to reect the state of complex sys-

tems, such as the Leading Economic Indicators (lei) index3. Such indexing typically

uses a linear aggregation of a large number of variables, each providing a di�erent

microscopic measure of state. For instance, the lei includes 11 indicators, such as

\average weekly initial claims to unemployment insurance", \building permits for

new private housing", and \index of 500 common stock prices".

4.5.1 mib Computations Using snmp

mib variables can be combined to yield useful status indicators. For example,

the utilization of an interface at time t=sysUpTime can be de�ned as

U(t) =
(ifInOctets + ifOutOctets) � 8

(ifSpeed � sysUpTime � 100)

where ifInOctets (ifOutOctets) gives the total number of bytes received (sent),

and sysUpTime is multiplied by 100 to yield units in seconds. This measure provides

an average sense of utilization over a time window since the device was reinitialized.

A useful indication of the instantaneous network state is provided by the derivative

u(t) = dU(t)=dt. A derivative such as u(t) may be approximated by frequent sam-

pling of the respective managed variables and computing their changes in U . Index

functions will typically utilize linear combination of such rates.

3See http://bos.business.uab.edu/forecast/lei.htm.
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Similarly, one can establish measures of instantaneous error rates to capture

additional micro-state indications. For example, the rate of input errors is e(t) =
dE(t)=d(t), where E(t) is the percentage of input errors to packets delivered, and can

be evaluated as

E(t) =
ifInErrors

(ifInUcastPkts + ifInNUcastPkts)
:

Here ifInErrors counts the number of inbound packets that contained errors which

prevented them from being delivered to a higher-layer protocol, and ifInUcastPkts

(ifInNUcastPkts) count the number of subnetwork-unicast (nonunicast) packets de-

livered to a higher-layer protocol.

4.5.2 Index Health Functions

A health index function is a linear weighted function of management variables

that aggregates micro-measures of local network state. Let us consider the state of a

LAN which is de�ned by a concentrator hub with n interfaces. A simple health index

function H may combine error and utilization rates. For example, H(~e; ~u) = ~A~e+ ~B~u

where ~e and ~u represent error rates and utilization rates, and ~A and ~B are their

corresponding weight vectors. This health function can provide a useful aggregate

measure of the network state. In general,

H(~f1; ~f2; :::; ~fk) =
X
j=1;k

~Wj
~fj;

where ~fj = (fj(1; t); fj(2; t); :::; fj(n; t)) represents the evaluation of fj(t) at the n

interfaces, and ~Wj is the corresponding weight vector. By compressing information

at the hub, the load on the noc hosts is signi�cantly reduced. In contrast, platform-

centric management computations require continuous polling of vast mib information

into the noc computers and its manual interpretation.

4.5.3 A Health Function cannot be Statically De�ned

Current network management paradigms do not support the exibility and

decentralization required to compute health functions e�ectively. Standard network

management approaches require a priori knowledge of what algorithms are mapped

into statically de�ned objects. The actual de�nition of what constitutes a healthy

network can not be �xed for all networks. Such a de�nition depends on the spe-

ci�c con�guration and administrative policies of each network installation. These

parameters vary among di�erent networks and during di�erent times within the same

network. For example, the rate of faults for a large WAN may be considered highly

unusual for a small LAN. Utilization levels or delays which are normal for an academic

department may be unacceptable for a hospital unit.
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The De�nition of Health evolves over Time

Even for a given network, the quantitative measure of health must vary dy-

namically, since over di�erent time periods the normal metrics of the environment

change. For example, the number of devices such as personal computers being used

depends on the time of the day and the day of the week. Besides, the con�guration

of a network is constantly evolving as elements are added, replaced or eliminated.

Therefore, health functions can not be statically de�ned, e.g., as part of an snmp

mib. Similarly, a health function could not be usefully incorporated as part of an

osi managed object. While the osi management framework permits encapsulation of

functions within managed objects and their remote invocation by managing entities,

these functions must be statically bound to a managed object at its design time.

Health Functions should be Distributed

A health function cannot be e�ectively computed by noc hosts. The rates

of polling required to aggregate the variables used may far exceed the platform's

processing capability. In the example above, suppose that N devices (e.g. N = 200)

are polled every s seconds (e.g. s = 0:1). The aggregated polling rate is then N=s,

e.g., 2000 snmp requests per second. As discussed earlier, polling through the network

introduces random perturbations in approximating temporal derivatives of managed

variables. This leads to observation errors and thereby potential hazards in making

decisions. The goal of data compression is to reduce data volume at its source.

Therefore, the observation operators that compose such functions must be spatially

distributed to the devices.

The following section presents the design and implementation of an application

that implements distributed health functions.

4.6 Health of a Distributed System

Developing appropriate metrics for computing an index function that repre-

sents the \health" of an heterogeneous network is not an easy task. In part, this

is due to the semantic heterogeneity of the sample behaviors of network devices. In

addition, the algorithms used to reduce sample observations into relevant informa-

tion need to change frequently. Observation operators must be adapted as (1) more

knowledge about the network behavior is acquired, (2) the network resources and its

usage policies evolve, and (3) as the expertise of the network human operators im-

proves. A health application needs both spatial and temporal distribution to adapt

to evolving requirements. Dynamic application con�gurability is needed for simple

parameters, such as thresholds, and also for the algorithmic logic that is embedded

in the programs that implement the application.

The health application evaluates sample observations over numerous network

elements and computes a high level abstraction of the operation of the network. Since
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centralized management is unsuitable to compute health functions, their evaluation

must be dynamically distributed. Delegating health functions to an mbd-server en-

ables the compression of observation data at its source. mbd permits exible changes

in health functions to reect speci�c behaviors at di�erent sites and times. Delegated

threads have direct access with minimal delay to the operational values of managed

variables. Hence they accomplish greater precision in observing sample behaviors

than would be possible using a centralized approach. mbd reduces the rates of polling

needed and restricts it mostly to times when problems are identi�ed via aggregated

index functions. Such functions are evaluated locally at the devices, and they continue

to execute during critical stress times when noc hosts have di�culties in reaching the

devices. When an operational problem is detected, its delegated threads can invoke

automatic correcting actions and produce event reports.

4.6.1 Components of the Health Application

The distributed \health" application consists of the following components:

� Manager application processes can dynamically recon�gure the distributed health

application. They present evaluation reports on a graphical user interface so

that operators can see a high level view of the network's operational state.

� A Health agent, Hdmpi, receives reports from the observers and evaluates a

higher level abstraction (H) of the state of the network.

� Observers monitor the network elements, produce quantitative diagnostics, and

sometimes perform corrective actions.

4.6.2 The Manager Process

A manager process can control the dynamic composition of the distributed

application. rds enables the manager to replace the de�nition of any observation op-

erator and to instantiate and kill processes as instances of the objects. An authorized

manager process may change the de�nition and con�guration of the health applica-

tion. For instance, it may modify the relative weights of the observers' evaluations in

the overall health score, or change the evaluation algorithm. A manager process may

con�gure which observer threads will report to a given Hdmpi, which values and how

often, and what is the relative weight of each measure.

Presentation of Information

A manager process receives information generated by the delegated agents.

The application uses a graphical display to present simple metrics that represent the

conclusion of many observations. These metrics are presented via generic graphical

display objects, such as colored gauges or scales. Reports of utilization are displayed

as gauges using colored ranges to classify information. The value of the health index
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for a given LAN is classi�ed into colored areas, e.g., unknown (blue), normal (green),

warning (yellow), and problem (red), to indicate distinct operational conditions. Pre-

sentation objects implement additional features to call the attention of the human

operator, like blinking text or beeping sounds.

4.6.3 The Hdmpi

The Hdmpi implements the main abstraction of the health application. For

each observer, the Hdmpi keeps con�guration parameters, which are also modi�able

by the manager. A manager may order the Hdmpi to take into account an observer's

report for the calculation of the health value or to ignore it. Observer threads provide

the Hdmpi with measurements derived from the computed sample observations, i.e.,

the fi. The Hdmpi uses these measurements to compute a numerical health score. An

additional table of weights is used to compute the relative value score for a given mea-

sure compared with the other metrics. For example, if a certain rate has changed by

x, then its contribution to the overall score will be given by a value g(weights[f(x)]),

where f and g are functions de�ned by the Hdmpi. Fine tuning ~w and the fi is an

interactive process.

For each observer, the Hdmpi can keep an history log of the last n values

received from it. When it receives a new value from an observer, it decides how much

to a�ect the health score depending on which range the score is in, the percentage

of change compared with the sensitivity, and the directionality of change. Hdmpi

performs a scalar product using ~w and fi(~x). When the Hdmpi receives a report

from an observer it recomputes the health score as follows. First, it checks if the

observer report should be ignored or not. If it is not ignored, the Hdmpi establishes

the range of the report, and calculates the di�erence with the previous value and its

direction of change. It will then use the above information and apply the appropriate

g(weights[f(i)]) to recalculate the health score.

Communication with the Manager

TheHdmpimay report its evaluated score (1) by answering an explicit request,

(2) by setting a private mib variable, or (3) as event reports at a frequency established

by the manager. A manager can invoke commands to inuence the Hdmpi computa-

tion. For example, it can get/set the current health value or any value of a observer,

suspend/resume reporting at a given frequency, and add and delete observers.

4.6.4 Generic Observers

Generic observers execute as delegated threads under the control of an mbd-

server in close proximity to the networked elements being monitored. Observers

collect raw data from the network elements and produce measurements which are

reported to the Hdmpi and/or the manager. Generic observers provide services which

can be invoked remotely by manager processes to support a class of con�guration
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changes. Examples of these are the following: The list of processes that it should

report to, device information speci�c for a given source of information, (e.g., for an

snmp agent, host and community), the length of the sampling intervals, the length of

the history log, whether to forward messages to the manager (blind copies), and the

frequency of event reports to manager. On instantiation, a generic object instance

reports its con�guration options and their current settings. During execution they

accept manager requests to change their internal con�guration.

Each observer de�nes the minimum relative sensitivity of variation in measures

that can a�ect the health index. Sample observation changes which are below the

sensitivity threshold are ignored. An observer may divide the space of its monitor-

ing values into di�erent ranges, each requiring di�erent handling. For instance, an

observer may de�ne thresholds for LAN error rates which de�ne ranges like \safe",

\warning" and \dangerous". Each observer's report has a positive or negative con-

tribution, e.g., when there is an increase (decrease) in the value received, the health

score should also increase (decrease). For example, error rate has negative logic: the

higher the rate, the worse the evaluated health value.

Algorithm for a Generic Observer

At initialization, an observer reads its own con�guration, and communicates

it to a manager process. It will obtain data values at the speci�ed intervals, calcu-

late di�erences with previous values, and apply some locally de�ned function, e.g.,

g(weights[f(i)]) to calculate its score. If the calculated value exceeds a triggering

threshold, a report is sent to the health object and/or to the manager, and is also

logged. If some corrective actions were de�ned, then the observer will execute them.

Each of these observers computes either a speci�c numeric score or a set of

scores, according to the instructions received from the manager. For example, the

operational state observer will obtain state information about a given list of network

elements, including servers, workstations, PCs, routers, and so forth. The observer's

processing will take into consideration the relative worth of each element, as de�ned

by the manager. For example, the fact that a PC is not working may be normal

whenever the user turns it o�, so its relative importance is minor. However, if a �le

server is not operational, then the score evaluated by the state observer should change

signi�cantly, to reect its relative signi�cance to the well-being of the distributed

system.

Event Reports and Corrective Actions

Event reports and alarm conditions may be raised by an observer when they

evaluate an expression. Such expressions could be simple, e.g., the index score eval-

uated by an observer reaches below (above) a speci�ed threshold. But they can also

express complex relationships between measurements. For example,

if (((SomeCondition AND Down(Device1))) OR (P(Device1) < Q(t))) ....

Such conditions and thresholds can be de�ned as part of the generic object, can be
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Figure 4.5: Prototype of Health Application

time dependent and dynamically adjustable. Thus, they can take into consideration

network, behaviors for di�erent periods of time.

Diagnostic procedures and corrective actions may be triggered as a result of

an event. For example, if the level of an Ethernet utilization becomes too high, an

observer thread may be instructed to perform some corrective action. It may identify

the device which is the source of the largest amount of packets, and if possible, it can

temporarily disconnect it from the network, until the load on the LAN returns to a

normal range.

4.6.5 Prototype Implementation

We implemented a collection of generic objects to evaluate the health of an

Ethernet LAN. We used an early prototype of the health application to demonstrate

mbd at the Synoptics booth at the InterOp 1991 Conference. The value of this

function is computed based on several inputs about devices and LAN behavior: (a)

Status of devices, (b) LAN Utilization, (c) Collision Rate, and (d) Error Rate. Figure

4.5 depicts the relationships between the components of the health application.

Observation Operators

The prototype implementation uses the following observation agents:

1. Operational state of networked elements. The State observer checks that

each of the network elements is operating. Device down represents the situation

when no data can be sent or received from the device. It is not possible to
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determine if a device is really up unless the device supports snmp or ping. For

devices that support snmp, the status can be obtained via the ifOperStatus

(current) and ifAdminStatus (desired) for each interface. Alternatively, the

status is obtained by using icmp echo, (i.e., \ping") for each ip device. Figure

4.6 shows a skeleton algorithm that evaluates the device status.

2. Network Utilization. This observer evaluates the ratio between the number of

bytes received in some period of time and the maximum utilization possible for

the given network. This information can be obtained from standard mib-ii vari-

ables, or via alternative methods, e.g., NNStat [Braden and Schon, 1991]. For

the InterOp demo, we observed utilization at time t using the s3EnetConcRxOk

from the private Synoptics mib [Synoptics, 1990]

Utilization(t) =
s3EnetConcRxOk(t) � s3EnetConcRxOk(t0)

(t� t0) � 10000000
:

3. Collision rate. The collision rate observer will measure Ethernet collision

counters provided by a private snmp mib [Synoptics, 1990]. The collision rate

is computed as the number of collisions by the total number of packets over the

same time period, again using counters from the private Synoptics mib4:

Collisionrate(t) =
�(s3EnetConcColls)

�(s3EnetConcFrmsRxOk)
:

4. Error rate. A generic error observer may use snmp mib-ii variables to measure

error rates at the interface level and for speci�c types of tra�c, e.g., ip, tcp, etc.

Notice in Figure 4.5 that the error rate observer can send direct error report

messages to the manager process using rds SendMessage(). At the InterOp

demo, the Ethernet error rate was computed by adding CRC and misalignment

errors from the private Synoptics mib:

Errorrate(t) =
�(s3EnetConcFCSErrors + s3EnetConcAlignErrors)

�(s3EnetConcFrmsRxOk)

Health Algorithm

Based on the experience of the SynOptics network engineers, we de�ned several

algorithms for computing the health score. The following rules are an example of one

of the early versions of the the health algorithm. A \perfect" LAN had a health score

of 10. An alarm condition was raised when the health score reached 3. Conditions

that changed the score included: -1 for every device down. -1 for every 5% average

utilization above 30%. -2 if the peak utilization exceeds 50%. -2 for the loss of any

4�(F ) means F (t)� F (t0).
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IF DeviceType = NonTCP THEN

IF s3EnetPortPartStatus is ENABLED (port for device, e.g. PC)

AND s3EnetPortJabberStatus is OK

AND s3EnetPortLinkStatus is DOWN THEN

DeviceStatus = DOWN ELSE

DeviceStatus = UNKNOWN

IF DeviceType = Server THEN

IF ICMP Ping = OK THEN

DeviceStatus = UP ELSE

DeviceStatus = DOWN

IF DeviceType = SNMP THEN

IF get_ipaddress = OK THEN

DeviceStatus = UP ELSE

DeviceStatus = DOWN

Figure 4.6: Device Status Algorithm

�le server, since many users can not work without them. -1 (-2) If the collision rate

is between 1-2% (> 2%). -1 if the error rate is above .2%. The Hdmpi uses snmp

to store the computed index values on the local mib. Thus, a remote snmp manager

like B can access the computed scores (see Figure 4.5).

Manager Presentation

The management console displayed several graphs of the computed observa-

tions: Health score, LAN utilization, Collision Rate, and Error Rate. Additional

measures included the load on the �le server host, the bridges, and the router. The

health application also provided a con�guration monitor which turned a console icon

to yellow to signal a potential problem. For instance, the icon changed color if the

health of the LAN fell below 3 anytime within one hour after a con�guration change

(adding a new device or upgrading its software) was made. A light started to blink

at the console under any of the following conditions: (1) Average Utilization of 55%,

(2) 3 devices and the server are down, (3) the server is down and utilization is 45%,

(4) Collision rate is greater than 2% and error rate is above .2%.

Overview of Demo

A diagram of the network con�guration at InterOp is given in Figure 4.7. An

algorithm as de�ned above for the health of the LAN was delegated from a workstation

to the Network Control Engine (NCE), a SPARC cpu at the hub. A PC executed



125

PC 
Management
Station

GUI
Operator

MIB

NOC

F

File
Server

File
Server

Ethernet

SNMP−agent

Work
station

Non−SNMP Device

NCE MIB
Ethernet
HUB

Port

SNMP−agent

Router
Gateway

Other
Networks

Figure 4.7: Synoptics Network at InterOp

a Synoptics management application that displayed the health meter and the other

graphs. This application polled the Health values (via snmp Gets) from the NCE at

the hub. We de�ned a private snmp mib object Health, which was made available to

any other snmp management application, to demonstrate interoperability.

Initially the LAN health score was a perfect 10. We then disconnected a few

devices and loaded the network using a sni�er. This resulted in the meter going down

to below 3 and the generation of an alarm condition. We added di�erent devices and

brought the servers up and down by disconnecting their cables. One of the devices

was sending too many CRC errors. This raised the error rate and the health score

went below 3. The application automatically diagnosed and isolated the errors to the

particular device and it partitioned the corresponding port. This brought the health

of the LAN back to normal, and demonstrated how the Health application provided

pro-active fault isolation.

We then demonstrated that some aspect of the network has changed. For

instance, we (1) changed the score associated with the loss of the �le server, (2)

changed the health score algorithm to be sensitive to the time of the day, (3) dynam-

ically changed the de�nition of error rates to include \Runt" packets, and (4) tuned

the sampling intervals for the observations. These examples required the modi�cation

of the original health algorithm and communications between the delegated agents.

We edited the changes at a SUN workstation and delegated them to the mbd-server at

the NCE. We tested the new health algorithm concurrently with the old one, suspend-

ing and resuming their execution as required. The new delegated agents executed as

expected and the PC application did not notice any change.
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4.7 Conclusions

Current network management paradigms do not support the temporal distribu-

tion and spatial decentralization required to compute real-time management functions

e�ectively. We introduced a formal notation to describe the behaviors of managed

entities and their observations by mibs and by management applications. Manage-

ment applications can dynamically compose operators to observe the behavior of the

network elements. The output of these observation operators is used to reach man-

agement decisions. The traditional network management paradigm introduces many

problems that prevent the e�ective computation of such operators.

We de�ned index functions to compress real time management observations

at the location of the managed entities. We implemented an mbd application that

computes a health index of a network, and demonstrated its functionality at several

conferences, including InterOp. The application performs a proactive diagnosis of

failures and performs corrective actions in real-time. Management decisions, such

as to temporarily disconnect a device, are executed e�ciently, without the need for

remote noc intervention. Real-time operational data is e�ectively compressed at

the mbd-server, reducing the management data overhead on the network. The mbd

environment allowed network managers to tailor and customize the health application

during execution.
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5

MIB Views

5.1 Introduction

Management applications need to compute useful information from raw data

collected in mibs. Often such computations cannot be accomplished through remote

interactions between the application and snmp-agents. For example, suppose that an

application needs to perform some analysis on all the routing table entries of a router.

The application can use snmp's get-next requests to retrive the routing table entries,

one row at a time. This interaction, however, does not provide an atomic snapshot of

the routing table at a given time, which is needed for consistency analysis. Instead,

di�erent sections of the table as seen by the application will reect di�erent versions

of the routing table at di�erent times.

This chapter introduces technologies to support extensibility of snmp-agents

to compute information from raw mib data. It introduces an mib View De�nition

Language (vdl) to specify computations over mibs. Applications can delegate views

de�ned in vdl to snmp-agents in order to extract information of interest. For exam-

ple, the routing analysis application could delegate views that take atomic snapshots

of mib tables. It could then retrieve the entries of these atomic snapshots using

standard snmp get-next requests.

In what follows we �rst describe several typical scenarios where applications

must compute information from raw mib data and cannot accomplish it e�ectively

within the context of non-elastic snmp agents. We then summarize the approach that

we pursued to address these problems.

5.1.1 Examples of MIB Computations

Example: Filtering MIB Data

Applications often require means to retrieve selective information from mib

tables. Consider a diagnostic application of an atm network that needs to detect

problems arising at virtual circuits (VC). At present this application must retrieve
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the entire VC table from every atm switch in the network. It can then scan the

respective operations statistics of each VC and decide whether it has a problem or

not. With VC tables having potentially many thousands of entries, frequent retrievals

of entire tables to detect potential problems of a few VCs is highly ine�cient. Instead,

it would be desirable to support selective retrieval whereby only entries that meet

some �ltering criterion (e.g., VCs whose operational statistics indicate problems) are

retrieved.

This means that the application should be able to designate a �ltering com-

putation and pass it to the device and that the device can compute this �lter before

delivering data to the application. cmip incorporated such �ltering capabilities as

part of the protocol1. Our system supports the computations of selective retrieval

from snmp-agents without modifying the snmp protocol.

Example: Joining MIB Tables

A management application may need to quickly retrieve information that is

scattered among several mib tables, e.g., routing information speci�c to certain type

of interfaces and their current utilization. Again, the snmp protocol interaction re-

quires the application to retrieve data from all the potential mib tables to the plat-

form host and only there to locally select the relevant data. For instance, the mib-ii

ipRouteTable keeps track of ip routes, and interface information is found at the mib-

ii ifTable. An application may need to correlate routes with interface utilization for

capacity planning purposes. Such an application may need to retrieve data from the

ipRouteTable and use the ipRouteIfIndex column as an index for the correspond-

ing retrievals from the ifTable. Such an application may also need to impose a

selection criterion on the retrieved values of the correlated entries. For instance, it

may only need to retrieve ipRouteTable entries that have been learned via a speci�c

mechanism, like the Border Gateway Protocol (BGP). In this case the selected entries

will have bgp as the value of their ipRouteProto attribute.

Using snmp, an application must retrieve individual columnar objects from

the mib, and then locally select the appropriate values and discard those that do not

meet the selection criteria. Such management applications are forced to retrieve large

amounts of data to the platform host to perform simple operations like �ltering and

joining mib tables. This construction of an application-generated data models su�ers

from all the penalties associated with snmp polling. Again, the snmp paradigm does

not provide any e�ective mechanisms to de�ne such an external level user view out

of its monolithic mibs.

Example: Intrusion Attempt

Assume that a warning indicating intrusion attempts via the finger service

has been received at the network operating center of a large organization. A net-

1See Appendix A.5 for a description of cmip.
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work manager may want to retrieve the information available about such remote tcp

connections to all its hosts. The tcpConnTable table ofmib-ii lists all the tcp connec-

tions of a host. The tcpConnLocalPort �eld of each entry row of the table indicates

the local port of the connection. A manager may use these sample observations to

monitor for connections to the finger service port, 79.

Notice that large hosts may have hundreds of tcp connections. Using snmp,

a management application must retrieve all the entries of the table, and locally select

those that match the criteria, e.g., tcpConnLocalPort = 79. This retrieval will

require many remote network interactions, and therefore will be very slow. Also, the

retrieved table row variables may be concurrently updated before the entire retrieval

has been completed. For instance, an intruder may use an ephemeral tcp connection

to the finger port, and then use another port to continue its intrusion. In general,

race conditions between concurrent updates of mib data and their remote retrieval

may result in management observations missing critical elements of the corresponding

sample behavior sequence.

Example: Atomicity of Management Actions

Consider a router whose routing table has several thousands of entries. A

management application (A) may need to retrieve all the entries of the table at once

in order to analyze routing con�guration patterns. Using snmp, this retrieval will

require many network interactions, and therefore will be very slow. More importantly,

the retrieved variables may be updated before the entire retrieval has been completed.

For instance, another management application, B, may concurrently update routing

entries. This race condition between A and B can result in A being misled by the

retrieved data.

This example shows that we need a way to make mib computations with certain

semantical guarantees. For instance, in the above example, A would need to specify

an \atomic snapshot". In such a snapshot the values of the mib variables being

retrieved are guaranteed not to change. Large table retrievals in snmp do not have

atomic transaction semantics. Each Get and Get-next exchange retrieves the current

data values of each table entry at the time the request is serviced. Retrievals of large

tables involve many snmp Get requests. Yet the values stored in the mib may change

during the retrieval process. If this occurs, the table images at the management client

side will be inconsistent with the values stored by the mib.

5.1.2 MIBs Lack External Data Models

The above examples illustrate some of the problems that result from basing

management observations on remote mib access. These examples show that there

is a need for mechanisms to perform mib computations at the devices, while using

standard data access protocols (e.g., snmp) to these computations. A central di�culty

in developing management applications is the need to bridge the gap between two

di�erent data models. Each management application de�nes its own structure for
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the data it needs, but these structures are not identical to the mib data structures.

Management applications need to bridge the semantic gap between the conceptual-

level data model rigidly de�ned in the mib structures and the data model that they

need.

Standard network management frameworks provide no support for manage-

ment applications to dynamically de�ne external data models as part of the mibs.

Although it is possible for applications to retrieve raw mib data and compute the

appropriate data model at the platform host, this is highly ine�cient. Therefore,

management applications are forced to retrieve large amounts of data to the platform

to perform simple operations such as �ltering. mibs do not support the external def-

inition of local computations that could focus their observation operators on relevant

data. For example, they do not support �ltering of mib variables, joining of mib

tables, and atomic actions at the devices.

Reuse of Computations

Moreover, the snmp paradigm does not provide means for various applications

that execute at multiple management stations to share and reuse computations which

are not part of the mib. An application may compute a useful table of objects after

�ltering and correlating mib data to perform some con�guration analysis. Other

manager applications could bene�t from these computations, but they have no simple

standard way to access them. Hence, each application will need to recompute them

anew.

Di�erent applications, and sometimes even the same application, may need

to recreate the same external-level model several times from scratch. The lack of

an external-level data model repository results in excessive and redundant retrievals

and recomputations. In a multi-manager environment, particularly one that crosses

several administrative domains, sharing of external data models can be very useful.

For instance, a remote manager may have less bandwidth available and longer delays

to recreate an external view. In such a case, access to an existing view could be the

only e�ective way to access the data of the mib.

Atomicity of Management Actions

Furthermore, in a multi-manager environment, it is di�cult to ensure atomicity

or transaction semantics of management actions over mibs. Using snmp, an action

is invoked as a side-e�ect of a Set operation. When an action is invoked by setting

a certain value to an object (i.e., a trigger object), an agent may treat one or more

objects as parameters related to the action (parameter objects). But a parameter

object set by one manager application may be modi�ed by another application before

the previous one invokes the action by setting the trigger object. This can lead to

unintended and incorrect behaviors. The problem of computing a join of a table as

an atomic action commonly occurs in many other network management scenarios.

For example, resolution of routing problems typically involves correlation of routing,
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address translation, and other con�guration tables. It would be thus very useful to

support e�ective computations of atomic joins.

Database Views

Traditional database systems support three data de�nition levels: internal,

conceptual, and external [Elmasri and Navathe, 1989]. External data de�nitions al-

low remote applications to de�ne \views" which are computations over the conceptual

level data. Our approach is to support a similar mechanism over an mib. Implement-

ing a full edged database system on top of an mib would be too costly and complex

for this purpose. Furthermore, the required semantics of these data models are some-

what di�erent from those of traditional databases. The computations over mibs are

based on real-time sample observations over fast changing data. For this type of data

there is usually no need to incur the computational costs and stable storage involved

in ensuring transaction semantics. Such costs may be beyond the resource limitations

of typical network devices. Our aim is, therefore, to design an e�ective external data

model for mibs without incurring the costs of a full-edged database system.

5.1.3 Problems and Solutions

The main problem that this chapter addresses is how to support the dynamic

de�nition of external data models for mibs. There are several technical challenges

that must be addressed. First, the new external data models need to be formally

speci�ed in an appropriate language. Speci�cations of external data models need to

be translated into executable code that implements their semantics. Second, we need

to e�ciently bind the resulting code and data structures so that they have direct access

to the original mib data structures. Third, we need to implement mechanisms at the

devices that ensure that the required semantics (e.g., atomicity) are enforced. Fourth,

the new framework must be properly integrated within the standard management

framework, so that existing applications and systems can interoperate with it.

MIB View Computations

Our approach is based on the mbd paradigm and consists of (1) a View De�-

nition Language, vdl, to specify mib external views and (2) snmp-agent extensions

that implement them. External views are computed via instrumentations over an

mib, and are performed by a special mbd-server. The results of these computations

are organized as mib variables that can be accessed by standard applications via

snmp. For example, mib views can be used to support: (1) �ltered retrieval of mib

objects, (2) relational joins between mib tables, (3) access control to an mib, and (4)

atomic mib snapshots.

Views may be used to support concurrent atomic actions in a multi-manager

environment. A view can be delegated to an mbd-server to de�ne an action trigger

and its parameters as an atomic group. For example, it can associate a queue of
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action requests with the group. Each Set invoked by a manager to any object in the

group will be queued. When all object Set requests by a given manager have been

received in the queue, the action is invoked atomically. Should two managers access

the action concurrently, their actions are serialized.

Chapter Organization

� Section 5.2 outlines the mib Computations System, including its vdl language,

and the mbd-server runtime extensions.

� Section 5.3 presents detailed examples of how to use this framework to achieve

�ltering, joining of mib tables, access control, and atomic snapshots.

� Section 5.4 describes mib actions.

� Section 5.5 discusses the advantages of using mbd to de�ne and perform mib

computations, and provides a brief comparison with related work.

� Section 5.6 concludes the chapter.

5.2 The mib Computations System

The mib Computations System is depicted in Figure 5.1. It consists of a

language to specify mib views computations and agent extensions that implement

these computations. The speci�cations of mib computations are prescribed by a

management engineer. These computations de�ne the objects of a new Virtual mib,

v-mib. The values of the v-mib variables are computed by instrumentations over

the original mib. These computations are performed by a special mbd-server, which

executes in the same host or at close proximity to the original mib. This mbd-server

supports a specialized ocp, namely, the mib Computations of Views Agent, mcva.
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Management Information Bases

An mib can be viewed as a simple database. Indeed, a database is de�ned by
[Elmasri and Navathe, 1989] as a logically coherent collection of data with some inher-

ent meaning, which is designed, built, and populated with data for a speci�c purpose.

Thus, snmp is the query language, the smi is its Data De�nition Language (ddl),

and an snmp-agent is a primitive database management system. A database system

includes an intrinsic data model schema, that de�nes the structure of the database

at three levels: internal, conceptual, and external. The internal level describes the

physical storage of the data, e.g., the internal representation of mib objects by an

snmp-agent. The conceptual level describes the entities, using the smi language. The

external level includes external schemas or user views which describe the parts of the

database in which a particular user or group is interested, and hides the rest of the

database.

In snmp the external level is identical to the conceptual level. That is, there are

no high-level data models geared toward speci�c applications. In snmp the conceptual

model de�ned by each mib is the only external model. Management applications

may need to perform analysis on data which is logically organized in di�erent ways

than those prescribed by the mib. In database systems, di�erent external levels are

speci�ed in views. A database view is a single table (relation) that is derived from

other tables which can be either primitive base tables or previously de�ned views. For

example, a view mapping could be used for selecting speci�c rows and columns from

several tables, combining and correlating mib data. snmp management applications

must retrieve \raw" mib data and recreate an appropriate data model at the central

host. As described in earlier chapters, this is ine�cient and unscalable.

Management applications must bridge the gap between the data schemas

rigidly de�ned by the mib structures and the data model required by each appli-

cation. mib views address other problems that result from snmp's lack of primitives

to perform atomic actions and access control at the appropriate granularity. Also,

some of these problems are exacerbated because snmp is implemented over an unreli-

able transport mechanism, udp, which may lose, duplicate, or deliver out of order any

snmp pdus. We de�ne a model of mib computations that addresses these functional

shortcomings of the snmp paradigm.

We address these problems by using mbd extensions to snmp agents together

with a speci�cation language for computations over mibs. This scheme allows man-

agement engineers to de�ne arbitrary mib computations. These computations can

then be accessed by management stations, using snmp queries. Network manage-

ment engineers can create external level data models at the managed node side.

These models are de�ned in the vdl language as mib view objects and actions. mib

views are delegated agents that are translated by the mbd-server into data structures

and semantic routines that extend the mib. This process is shown in Figure 5.2.

vdl constructs support the de�nition of selected table objects which are de-

�ned as joined mib tables. It also supports selective retrievals of mib objects that

meet a selection criterion, based on arithmetic and logical operators. The mbd-server
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incorporates a translator that can accept or reject view de�nitions that do not conform

to the vdl language or contain erroneous references to mib objects. The translator

compiles legal vdl code fragments, and generates the required mib structures to hold

the computed mib values. The mcva implements a dynamically extensible, virtual

mib that supports views and actions.

5.2.1 vdl - View De�nition Language

vdl is a management language that provides constructs for de�ning mib view

objects and actions. vdl views are based on a restricted subset of sql. sql has

appropriate constructs for view de�nition and is widely used for data management

tasks. A vdl translator can accept or reject view de�nitions that do not conform to

the vdl language or contain erroneous references to mib objects.

Many database systems extend their data de�nition language (ddl) to support

views. For snmp mibs, extending the ddl is akin to extending the smi to support

views, which is the the approach presented in [Arai and Yemini, 1995]. In contrast,

our de�nition leaves the original smi standard intact. We discuss some of the problems

with that approach and compare the de�nitions of views in both languages in Section

5.5.2.

The syntax of our vdl is shown in Figure 5.3. It consists of constructs for

creating view objects, (CREATE MIBVIEW), de�ning mib actions (CREATE MIBACTION),

and destroying them (DELETE).

The MIBVIEW construct

The CREATE MIBVIEW statement follows the pattern of the sql CREATE

VIEW command statement. The MIBVIEW gets a name (<view-name>), an optional

list of attribute names for the columnar objects of the view (<columnar-objects>),

and an optional attribute ([SNAPSHOT]) value for creating snapshot views. The table
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CREATE MIBVIEW [SNAPSHOT] [<columnar-objects>] <view-name>

AS SELECT <attribute-list>

[FROM] <table-list>

[WHERE] <condition>

[DESCRIPTION] <description>

CREATE MIBACTION <action-name>

[ACTION] <action-procedure-identifier>

[IID] <invocation-id>

[INPUT] <input-parameters>

[OUTPUT] <output-parameters>

[DESCRIPTION] <description>

DELETE <view-action-name>

Figure 5.3: vdl Syntax.

contents are de�ned using a select-from-where block construct.

view-name is the proposed object-name for the mib view table. It must be unique in

the scope of the mcva, since it is used for identi�cation purposes. If the view is

accepted by the vdl translator, the mcva assigns a corresponding snmp Object

IDenti�er (oid) for the view table under the view tree. The oid is returned to

the application which delegated the view.

columnar-objects are the new names of the individual columnar objects which

constitute the conceptual rows of the new table.

SNAPSHOT is an optional attribute which speci�es that the MIBVIEW should be com-

puted once as an atomic snapshot of the mib. A snapshot view maintains copies

of the values of the objects at the time of the snapshot. The corresponding view

table will have two extra �elds: one of them is a snapshot-timestamp, which

saves the value of the local date/time, and an instance index. A management

application will be able to retrieve an existing snapshot view by specifying ei-

ther the timestamp or the index. Each new instance of the snapshot view is

computed when an appropriate snmp query is received.

attribute-list is a list of attribute names whose values correspond to the elements

(columnar objects) of the MIBVIEW. These typically correspond to columnar

objects of the base tables or functions computed on their values.
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table-list is a list of the mib tables which need to be accessed in order to derive

the MIBVIEW table2.

condition is a Boolean expression that identi�es the rows of the mib tables which

are to be retrieved as part of the MIBVIEW. If the WHERE clause is missing, there

is no condition for row selection, so all rows are selected for the view. The

Boolean expressions are built using the following Boolean operators: and, or,

not, eq (=), neq (6=), lt (<), gt (>), le (�), ge (�), with their obvious

semantics.

description is a textual description to be appended in the DESCRIPTION �eld of

the corresponding mib table, for documentation purposes.

The MIBACTION construct

The de�nition of MIBACTION introduces a formal declaration of a procedural

interface of a given action that is executed in the mbd-server. The actual program

that implements the action is usually a delegated agent, speci�ed in any msl. The

mcva maintains a table of actions, vmib-action-table, and for each action a table of

invocations, vmib-action-invocation-table. The attributes of the MIBACTION

provide a reference to the actual program, an identi�er for each invocation, the input

paramenters set by the manager at invocation time, and the output parameters set

by the action as results.

action-name is the object name that identi�es the action row in the vmib-action-table

v-mib table.

action-procedure-identifier speci�es an oid which refers to the invocation \trig-

ger" of the given action. For example, this oid can correspond to an mib object

that represents a delegated agent.

invocation-id is used as an identi�er for the invocation, i.e., it identi�es the concep-

tual row of the vmib-action-invocation-table v-mib table for the invocation

call.

input-parameters are the formal names of the parameters that need to be set by

the management application prior to the execution of the action. The values of

these input parameters are initialized atomically.

output-parameters are the formal names of the output parameters which the man-

agement script should set as results for the action.

2This may be redundant if the attribute-list identi�es all the values.
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5.2.2 The MIB Computations of Views Agent

The mcva provides the runtime extensions that implement the external-level

mib views and actions. The mcva executes as an ocp inside an mbd-server con�gured

with a vdl translator. To support the semantics of mib views and actions, the

mcva binds the code generated by the vdl translator to compute the mib views, to

produce the values of the views columnar objects and actions. mcva also enforces

the atomicity of view snapshots by locking parts of the mib.

mib views provide external data schemas.

An mib view object is a single mib tabular object derived from other snmp

mib tables. These tables can be either original mib tables or previously de�ned view

objects. A view object is a table that is needed by some management applications,

but may not exist physically in the mib. A view object maps the conceptual data

model of the mib to the external data model which is needed by the application.

For example, a view mapping may involve selecting speci�c rows and columns from

several tables, for the purpose of combining and correlating mib data. Examples are

provided in section 5.3.

The external data model created by a collection of mib views is a virtual mib,

v-mib. The values of the objects in v-mib are derived from the values of existing mib

objects by applying a selection pattern, such as joins of mib tables, upon a query.

Unfortunately, the updating of views which involve more than one base table is

complicated and may even be ambiguous. In general, views de�ned on multiple tables

using joins, and views de�ned using aggregate functions (e.g., arithmetic operators)

are not updatable. Indeed, updating views is still an active research area [Elmasri and

Navathe, 1989]. Thus, we apply views only for queries, i.e., read-access operations on

mibs.

mib View Snapshots

View Snapshots are new v-mib objects which provide an instantaneous copy of

the values of a collection of mib variables. The snapshot copy is executed \atomically"

with respect to agent changes of the mib values. That is, during the period of time

that the snapshot is being taken, the agent will not update the mib variables, neither

by a manager SetRequest nor by reecting changes in the state of the real managed

objects. In other words, the corresponding mib tables are e�ectively locked. This

capability requires that the mcva agent be able to e�ectively prevent mib updates

in the snmp agent during the taking of the snapshot. The generated v-mib objects

provide a stored snapshot of the mib state, which can then be retrieved via snmp.

mib Actions

mib views can enforce atomic semantics of management actions over mibs.

For each action, there is a set of mib objects that implement a call frame, which
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includes the input parameters, the output parameters, and a call identi�er. To ensure

that there will be no race conditions between concurrent actions, each call frame is

implemented as an entry row in a v-mib table.

The mcva guarantees that every invocation is independent of the others. An

action is initiated by a manager retrieving an mib object which is a \call counter"

for the action. This call counter is a test-and-increment object. Everytime that a

manager retrieves the counter, its value is incremented, thereby insuring that no two

managers will get the same value.

To perform an action, a manager must set all the input parameters of a newly

created conceptual row, and use a valid call counter value as the call identi�er colum-

nar object. When the SetRequest is received, the agent will allocate a new call-frame

row indexed by the call counter, and invoke the action with those parameters. Upon

completion of the action, the values of the output paramenters of the row are ini-

tialized, and a GetResponse is sent to the manager. The manager will then use a

GetRequest to retrieve the output parameters.

mcva integrates an snmp-agent

The mcva allows snmp applications to access computed mib views. Hence

it must be closely integrated with an snmp-agent. Note that there can be only one

snmp agent in any given host who listens to the corresponding UDP port 161. If

the mcva will execute on the same host as an existing snmp agent, they need to

cooperate.

Figure 5.4 describes an implementation of mcva as part of an mbd-server. In

this design, there is a front end snmp-agent that routes snmp requests according to

their oids. Requests meant for the original mib are handled by a \basic" snmp-agent

component, while those whose oids relate to views are routed to the mcva. The

mcva can directly invoke the methods that provide access to the internal snmp- mib

data representations, and those of the mib-views.

The front end of the snmp agent forwards all snmp requests for the v-mib to

the mcva for proper handling. The mcva must also be able to access the primary

mib contents for computing views and performing actions. Parts of this access could

be accomplished by using snmp. The advantage of using snmp is that it does not

require dealing with the internals of the snmp-agent. However, the snmp interface is

insu�cient, since the mcva also needs to be able to lock the primitive snmp-agent.

Thus, some additional mechanism to access the snmp-agent is required.

The responses that the mcva generates can be sent directly to the appropriate

manager, since they do not require handling by the snmp-agent. This is possible

since the snmp standard mandates that the requests be received on port 161, but is

silent concerning which port should be used by the agent to respond. For instance,

if a manager uses its port 4123 to send request messages to the agent's 161 port, the

agent can use its port 5678 to send a reply to the manager's 4123 port.
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Figure 5.4: The Relationship between the mcva and snmp agents.

5.2.3 Applications can Learn about mib Views

Management stations have di�erent ways to learn about the mib objects sup-

ported by any agent that they wish to query. A management application must know

or �nd out whether or not a given agent supports a speci�c mib, and in particular,

the v-mib. In general, management applications need to discover the agent mib re-

sources. This problem is somewhat orthogonal to our main concerns in this chapter,

and can be solved in several di�erent ways.

One way to solve the discovery problem is to provide an mib of extended mibs

in the management agent itself. For instance, a View-object-de�nitions-mib, is a

repository mechanism built as an mib View, which is a table of contents for the mib.

Whenever a new view is installed, the mcva can add an entry into this table, with

an appropriate description of the view. Management applications can query this mib

table to learn about the local view extensions of the v-mib.

An alternative way is for the mcva to deliver advertisements of the new mib-

views to a set of management stations. A management engineer can de�ne this

set as part of the mbd-server con�guration. This is only a partial solution, since

only some management stations will receive the information. Moreover, this type of

solution requires knowledge about the type of application and internal implementation

details. For instance, it may require knowledge about how mib objects are represented

internally at any particular management station. Stations which are not listed, and/or

belong to a di�erent administrative domain would not receive the advertisement.
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5.3 Applications of MIB Views

This section presents several examples that illustrate the use of mib views to

overcome many of the shortcomings of snmp. These examples include:

� �ltered retrieval of mib objects,

� relational joins between mib tables,

� access control to an mib, and

� atomic mib views.

5.3.1 mib Views can �lter mib data

snmp does not support value-based �ltering of mib data at its source. An mib

view object allows manager applications to �lter table retrievals at their source, using

arithmetic and Boolean operators over mib values. Our method of �ltering can be

more e�cient than the one pursued by cmip, where �lters are passed as part of the

queries. vdl �lters are delegated ahead of access. Therefore, they require no parsing

and no interpretation during access time, as is the case for cmip �lters.

Simple Examples of Filters

Consider, for example, a typical routing device. The number of row entries in

a routing table can be in the hundreds or even thousands. A management application

may need to process all the entries in the table for which the NextHop �eld has certain

values. For instance, the NextHop �eld may represent the ip address of a device which

is due for service.

This selection criteria may be speci�ed as \retrieve all the ipRouteEntry rows

for which the NextHop �eld is ...". For an snmp application, this would require

�rst retrieving all the rows of the routing table to the management station and then

performing the data �ltering at the station. Yet, only a few of these are the ones of

interest to the management application. Thus, using snmp involves a large overhead

of requests.

Figure 5.5 presents an example of such a �lter. The �lter condition contains

an mib variable, privateView.WantedRoute1, which was de�ned for this purpose.

A management application can set this variable to reuse the �lter for di�erent ip

addresses. Similar �lters can be de�ned for other large tables. For example, another

useful �lter could select tcp connections from the tcpConnTable by their local ports.

Figure 5.6 de�nes a �lter criterion that selects all interfaces for which the number of

con�gured VPCs exceeds 2000, or the number of con�gured VCCs exceeds 30000.
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CREATE MIBVIEW viewRouteNextHop1 (v2RD, v2RII, v2RNH, v2RA)

AS SELECT ipRouteDest, ipRouteIfIndex, ipRouteNextHop, ipRouteAge

FROM ipRouteTable

WHERE (ipRouteNextHop = privateView.WantedRoute1)

DESCRIPTION = ``Routes for NextHop WanterRoute1''

Figure 5.5: Routing Filter View

CREATE MIBVIEW viewvpcvccexcess1

(v3II, v3Maxvpcs, v3ConfVpcs, v3ConfVccs)

AS SELECT ifIndex, atmInterfaceMaxVpcs,

atmInterfaceConfVpcs, atmInterfaceConfVccs

FROM atmInterfaceConfTable

WHERE (atmInterfaceConfVpcs > 2000) OR (atmInterfaceConfVccs > 30000)

DESCRIPTION = ``Excess VPCs or VCCs filter''

Figure 5.6: ATM Filter View with Boolean expression.

A detailed example

mib view objects may be used to select objects that meet �ltering crite-

ria of interest. The example in Figure 5.7 de�nes a view based on mib-ii inter-

face table ifTable. This view selects three mib attributes, ifindex, ifSpeed,

ifPhysAddress, for all atm interfaces (i.e., those whose interface type is 37). With-

out this �lter view, a management application would have to retrieve all the interface

table entries and then check the type of each one.

If the ratio of atm interfaces to the total number of interfaces is small, the view

object can save the management station several retrievals for each mib. For instance,

a management application which is doing an inventory of atm interfaces in a large

network must query many snmp-agents. In such an environment the compounded

savings can be very large.

The vdl translator takes the de�nition of viewAtmIfTable1, and produces an

appropriate template in asn.1 syntax, as shown on Figure 5.8. This template follows

the smi rules and can be used by any snmp mib compiler. An noc application can

retrieve the selected rows of the the view table via snmp GET and GET-NEXT. For

example, consider the following snmp request using the above view de�ned over the

sample interface table given in Figure 5.9.

GetNextRequest(v1ifIndex, v1ifSpeed, v1ifPhAdd)
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CREATE MIBVIEW viewAtmIfTable1 (v1ifIndex, v1ifSpeed, v1ifPhAdd)

AS SELECT ifindex, ifSpeed, ifPhysAddress

FROM ifTable

WHERE ifType = 37

DESCRIPTION = "ATM Interface Table View from MIB-2 Table"

Figure 5.7: Example of vdl view for Interface Table.

The mcva agent will scan the interface table for the appropriate next entry, i.e., the

�rst atm row in the interface table. It will then return the corresponding values in a

Get-Response snmp pdu.

GetResponse( (v1ifIndex.3 = 3), (v1ifSpeed.3 = 155520000),

(v1.ifPhAdd.3 = 00000C03C82C))

5.3.2 Views Support Relational Joins of mib Tables

Management applications often require information following a data model

which is di�erent than the one prede�ned by the mib. The required data is contained

in several di�erent mib tables and is selected based on some matching criteria. In

relational database terms, an application may want to perform a join between several

relations (tables).

For example, in order to isolate some types of faults, a management application

may need to correlate the status of logical links (e.g., PPP links [Simpson, 1993b])

and the status of the physical ports which they use (e.g., HDLC [Simpson, 1993a]).

This correlation can be useful to help applications diagnose and isolate faults that are

manifested by managed objects associated with both layers. Such correlation could

be accomplished by computing a join of the respective tables.

Management applications may also need to quickly retrieve information that is

scattered among several tables, e.g., information speci�c to certain type of interfaces

and their current utilization. For example, atm interface information is found at the

mib-ii ifTable and at the atmInterfaceConfTable. Using snmp, an application will

need to retrieve values from one table in order to use them as indices for retrievals

from another table.

Again, the snmp paradigm does not provide any mechanisms to de�ne such an

external level user view of the mib data. Using snmp, an application must retrieve

individual columnar objects from the mib and then create an appropriate user-level

data model by itself. This construction of application-generated data models su�ers

from all the penalties associated with snmp polling.
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viewAtmIfTable1 OBJECT-TYPE

SYNTAX SEQUENCE OF vAtmIfTableEntry

ACCESS not-accessible

STATUS optional

DESCRIPTION "ATM Interface Table View from MIB-2 Table"

INDEX {v1IfIndex}

::= {mibview 1}

vAtmIfTableEntry1 OBJECT-TYPE

SYNTAX VAtmIfTableEntry1

ACCESS not-accessible

STATUS optional

::= {viewAtmIfTable 1}

VAtmIfTableEntry1 ::= SEQUENCE {

v1ifIndex INTEGER,

v1ifSpeed Gauge,

v1ifPhAdd PhysAddress

}

Figure 5.8: smi statements derived by vdl translator.

Example of Joining Tables

A better approach is to let the mcva compute a join, and retrieve only the

rows that belong to the joined table. This is particularly e�cient when dealing with

very large tables, when only a few of the relations will meet the �ltering constraints

of the join.

For example, the interfaces table de�nes a conceptual row (tuple) for each of

the (ifNumber) physical interfaces of the managed entity. Each row in this table has

22 columnar objects (attributes) as shown in Figure 5.9:

ifIndex (1), ifDescr (2), ifType (3), � � �, ifSpecific (22)

The atm-mib de�nes an atmInterfaceConfTable table, indexed by ifIndex, which

contains one entry row per atm interface port, with 12 columnar objects per entry:

atmInterfaceMaxVpcs (1), atmInterfaceMaxVccs (2),

atmInterfaceConfVpcs (3), � � �, atmInterfaceMyNeighborIfName (12)

A join of two tables can impose a selection criterion. For example, the following

condition speci�es that only atm interfaces which support ilmi3 are selected for the

join:

3
ilmi is the Interim Local Management Interface, which allows the user-side and network-side of

a User Network Interface to exchange information concerning a local atm interface.
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ifIndex ifDescr ifType ifMtu ifSpeed ifPhysAddress � � � ifSpeci�c

1 Ethernet0 6 1500 10000000 00000C03C84C � � � � � �

2 Fddi0 15 4470 100000000 00000C03C42C � � � � � �

3 ATM1 37 53 155520000 00000C03C82C � � � � � �

4 ATM2 37 53 155520000 00000C058C03 � � � � � �

5 ATM3 37 53 50112000 00000C058C05 � � � � � �

6 Ethernet1 6 1500 10000000 00000C03C82A � � � � � �

7 Ethernet2 6 1500 10000000 00000C03C82B � � � � � �

8 Ethernet3 6 1500 10000000 00000C03C82D � � � � � �

9 Ethernet4 6 1500 10000000 00000C03C82E � � � � � �

10 Fddi1 15 4470 100000000 00000C03C82F � � � � � �

11 Fddi2 15 4470 100000000 00000C01AAAC � � � � � �
...

...
...

...
...

...
...

...

Figure 5.9: Sample Interface Table

((atmInterfaceIlmiVpi 6= 0) OR (atmInterfaceIlmiVci 6= 0)).

If the values of atmInterfaceIlmiVpi and atmInterfaceIlmiVci are both equal to

zero then the ilmi is not supported at this atm interface.

An application may want to access, at once, several attributes from each in-

terface which are spread over both the interfaces table and the atm table [M.Ahmed

and K.Tesink, 1994]. For instance, a management application may want to retrieve

for each atm interface:

(1) the interface index,

(2) the total bandwidth in bits per second for use by the atm layer,

(3) the maximum number of Virtual Path Connections supported,

(4) the maximum number of Virtual Channel Connections supported, and

(5) the IP address of the neighbor system connected to the far end of this interface,

to which snmp messages can be sent.

CREATE MIBVIEW viewAtmIfTable4

(v4ii, v4is, v4aimvpcs, v4aimvccs, v4myia)

AS SELECT ifIndex, ifSpeed, atmInterfaceMaxVpcs,

atmInterfaceMaxVccs, atmInterfaceMyNeighborIpAddress

FROM ifTable, atmInterfaceConfTable

WHERE (atmInterfaceIlmiVpi NEQ 0) OR (atmInterfaceIlmiVci NEQ 0))

DESCRIPTION=''Join of ATM and Interface tables that ''

Figure 5.10: Example of vdl statement to join 2 tables.
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viewAtmIfTable4 OBJECT-TYPE

SYNTAX SEQUENCE OF vAtmIfTableEntry

ACCESS not-accessible

STATUS optional

DESCRIPTION "Join of ATM and Interface tables''

INDEX {vIfIndex}

::= {view 1}

vAtmIfTable4Entry OBJECT-TYPE

SYNTAX VAtmIfTableEntry

ACCESS not-accessible

STATUS optional

::= {viewAtmIfTable4 1}

VAtmIfTable4Entry ::= SEQUENCE {

v4ii INTEGER,

v4is Gauge,

v4aimvccs INTEGER,

v4aimvccs INTEGER,

v4myia IpAddress

}

Figure 5.11: smi statements derived from vdl statement to join 2 tables.

The mib view-object de�ned in Figure 5.10 joins data from the mib-ii interface

table, ifTable, and from the atm mib atmInterfaceConfTable. Both tables are

indexed by the same index, ifIndex. From that de�nition, the vdl translator derives

an appropriate template in asn.1, as shown in Figure 5.11. This is an example of the

very useful select-project-join queries. Figure 5.14 depicts an example of the joined

table computed using the base tables depicted in Figure 5.12 and Figure 5.13.

5.3.3 mib Access Control

A site may need to impose administrative access restrictions to prevent arbi-

trary remote managers from retrieving the original mib tables. Consider a collection

of Private Virtual Networks (pvns) sharing a common underlying physical network,

e.g., X.25, Frame Relay or atm. Such pvns are commonly used by telecommunica-

tion service providers to partition bandwidth among multiple organizations. Each

service provider is responsible for managing the entire shared network as a whole.

Customers can only view and manage their individual portions of the shared service.

A network management application responsible for managing the various pvns must

share access to the snmp-agents of the underlying network elements. However, these
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ifIndex ifDescr ifType ifMtu ifSpeed � � �

1 Ethernet0 ethernet(6) 1500 10000000 � � �

2 Fddi0 fddi(15) 4470 100000000 � � �

3 Ethernet2 ethernet(6) 1500 10000000 � � �

4 ATM1 atm(37) 53 155520000 � � �

5 ATM2 atm(37) 53 50112000 � � �

6 ATM3 atm(37) 53 1728000 � � �

7 ATM4 atm(37) 53 1728000 � � �

8 ATM5 atm(37) 53 50112000 � � �

9 Ethernet3 ethernet(6) 1500 10000000 � � �

10 Ethernet4 ethernet(6) 1500 10000000 � � �

11 Fddi1 fddi(15) 4470 100000000 � � �

12 Fddi2 fddi(15) 4470 100000000 � � �
...

...
...

...
...

...

Figure 5.12: Sample Interface Table

INDEX MaxVpcs MaxVccs � � � IlmiVpi IlmiVci � � � MyNeighborIpAddr � � �

4 200 10000 � � � 127 32000 � � � 128.59.16.1 � � �

5 300 20000 � � � 0 0 � � � 128.59.16.3 � � �

6 255 25000 � � � 64 0 � � � 128.59.18.12 � � �

7 200 15000 � � � 255 65535 � � � 128.59.19.10 � � �

8 300 20000 � � � 0 0 � � � 128.59.16.12 � � �
...

...
...

...
...

...
...

...
...

Figure 5.13: Sample atm Interface Table

v4ii v4is v4aimvpcs v4aimvccs v4myia

4 155520000 200 10000 128.59.16.1

6 1728000 255 25000 128.59.18.12

7 1728000 300 20000 128.59.19.10
...

...
...

...
...

Figure 5.14: Sample Joined atm Interface Table
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elements are typically owned by the subscriber organizations.

For obvious privacy reasons, access by such an application should be limited to

monitor and control only those resources that are required for speci�c management

functions, e.g., fault diagnosis or accounting. A customer site may also require some

access to global information to optimize its use of the available resources. For instance,

an organization may want to access network load and pricing information in order to

decide at what time to schedule some large data transfer. However, such global data

may include information which is private to another organization. For instance, both

organizations could be �nancial entities that share a common pvn at an overseas

location. In many countries there is only one network service provider. It would be

inappropriate for the pvn service provider to indirectly reveal con�dential information

of an organization to its competitors.

The original snmp standard does not provide an adequate framework for this

access control. Access control in snmp is de�ned by a community pro�le, which

consists of subsets of the mib objects and their corresponding access modes (R/O

or R/W). By de�ning several communities, an snmp-agent can limit access to its

mib, and provide di�erent levels of access to di�erent management stations. Thus,

access control is con�ned to those which the snmp-agent has de�ned in its mib. As

conditions and con�gurations change, a pvnmanagement system may need to retrieve

di�erent pieces of information, which are not subsets of the mib, and which the local

administrator could not have foresee when its community pro�les were de�ned.

mib Views Provide Access Control to mib Data

mib views can provide an e�ective mechanism to protect access to data. An

mib view can be used to de�ne limited access granularity for remote management

applications while maintaining access restrictions on the rest of the mib. Thus mib

views can support management across multi-domain networks.

For example, a pvn management application may need to retrieve informa-

tion related to tcp connections using a given port to discover intrusion attacks. For

instance, the �nger tcp port 79 [Zimmerman, 1991] has been used for many pene-

tration attempts. Assume that a series of cross-domain attacks using the �nger port

have been reported. The information about tcp connections could be used by the

pvn management application to assess whether or not the site is currently the target

of a remote attack, and to assist in tracing the source of the attack. These views can-

not be prede�ned statically at the agent, as the mode and types of intrusion attacks

continuously evolve.

An mib view could be de�ned by an authorized management engineer to re-

trieve the information related to tcp connections using a given port. This view would

be delegated to all the relevant nodes, enabling quick polling to retrieve information

concerning the source of the attacks. An example of such a view is de�ned in Fig-

ure 5.15 below. In this case the view retrieves the ip addresses and ports of the

connections with local port 79.
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CREATE MIBVIEW viewFingerPortConnections

(v5State, v5LocalAddress, v5RemAddress, v5RemPort)

AS SELECT tcpConnState, tcpConnLocalAddress, tcpConnRemAddress, tcpConnRemPort

FROM tcpConnTable

WHERE (tcpConnLocalPort = 79)

DESCRIPTION=``TCP Connections to Finger Port ''

Figure 5.15: Access Control to a subset of the tcpConnTable.

5.3.4 Atomic mib Views

A snapshot mib view is computed once and thereafter maintains copies of the

values of the objects at the time of the snapshot. Snapshot views are very useful to

investigate transient problems of short duration. Some of these problems are often

handled by automatic recovery mechanisms which quickly mask the symptoms of

the underlying problem. For example, routing algorithms can dynamically adjust

routes to react to changing network conditions. Algorithms like RIP's [Hedrick, 1988]

distance-vector algorithm, for instance, try to �nd the best route for every destination.

Thus, an intermittent routing problem may be masked by the routing algorithm itself.

A management application may need to retrieve all the ip routing tables of a

router at once in order to analyze routing con�guration patterns. Using snmp, this

retrieval will require many network interactions, and therefore will be very slow. More

importantly, some of the retrieved variables may be updated before the retrieval has

been completed. A management application would be misled by such concurrent up-

dates. Management applications need a way to specify an atomic snapshot retrieval,

in which the values of the mib variables being retrieved are guaranteed not to change.

To detect such intermittent conditions, a manager may take several snapshots

of the routing table at speci�ed times, and later evaluate the di�erences between

them. Each new instance of the snapshot view is computed when an appropriate

snmp query is received. An mcva agent may build a snapshot of an ip routing table,

e.g., ipRouteTable, for all entries whose route use a given collection of local interfaces

as their next hop of the route. Thus, the manager application will be guaranteed that

the values returned from quering the table snapshot are \consistent". The resulting

view table will be timestamped to identify the snapshot. By taking several snapshots,

(i.e., a trace of views) a management application can analyze more accurately the

behavior of dynamic route changes. This example is shown in Figure 5.16.

5.4 mib Actions

Management applications need to invoke imperative actions at managed enti-

ties. For example, remote actions can be used to:
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CREATE MIBVIEW SNAPSHOT viewipRouteTable1

(v6Dest, v6Ifindex, v6Proto, v6Age)

AS SELECT ipRouteDest, ipRouteIfindex, ipRouteProto, ipRouteAge

FROM ipRouteTable

WHERE (ipRouteIfindex = 1) OR (ipRouteIfindex = 3)

DESCRIPTION = ``Routing Snapshot''

Figure 5.16: Snapshot View of Routes via Interface 1 or 3.

� control the con�guration of managed devices, e.g., to establish permanent vir-

tual circuits through a switch,

� invoke diagnostic procedures when a malfunction is discovered, e.g., perform a

hardware diagnostics program for a malfunctioning workstation, and

� perform corrective adjustments to address performance ine�ciencies or failures,

e.g., modify routing tables to compensate for a malfunctioning interface in a

router.

snmp provides no explicit mechanism for issuing a command to an agent to

perform an action4. Rather, a prede�ned command can be invoked by an implicit

mechanism, which involves changing the value of an mib variable which has been

speci�cally designated for this role. As a side e�ect of changing its value, the object

will trigger the execution of the action. For instance, a reboot command can be

implemented as an mib private object, e.g., reBoot, which has a default value of 0.

When a manager sets the reBoot's value to 1, the managed system performs the

action (i.e., reboots) and resets the object value to 0.

Many management actions, however, need to be invoked with parameters.

Consider an action with n paramenters, A(p1; p2; :::pn). In snmp, the value of mib

objects can be set in order to be used as parameters to the action. An snmp-manager

could invoke this action by setting the corresponding mib variables A, p1, ..., pn in

one SetRequest pdu. The problem of this approach is how to ensure atomicity of the

invocation of actions. The standard speci�es that all objects in a single SetRequest

must be set \as if simultaneously".

Note, however, that the order of the value assignments required by each

SetRequest is arbitrarily de�ned by the agent. If a manager would use the same

SetRequest to set both the parameters and the action triggering object, its call se-

mantics could be unde�ned if the action is triggered with the wrong parameter values.

There is no guarantee that the triggering will happen only after all the parameters

(pi) are set to their corresponding new values.

4In contrast, cmip supports explicit invocation of remote procedure calls via the M-ACTION prim-

itive.
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Hence, a manager must ensure that all parameters are set prior to triggering

the execution of an action that uses them. Thus, two SetRequest pdus are needed

for each action, the �rst pdu for setting all the parameters (pi), and the second for

actually triggering the action (A). This situation creates a potential race condition

between managers. For instance, one manager could reset the values of parameters

just set by another manager who then issues an action triggering request. Such

interference could lead to erroneous results.

For example, consider a management action which allocates a bu�er for some

diagnostics results. Before invoking the action, a manager (A) must set the starting
address of the desired bu�er in an appropriate mib object, bufferStartingAddress.

A second manager (B) could change the value of bufferStartingAddress after A

set it, but before the action was triggered. This would clearly result in erroneous

results.

Unfortunately, such races are not rare, since snmp is implemented over udp,

an unreliable transport mechanism. udp may lose, duplicate or deliver out of order

the snmp SetRequest pdus. The second SetRequest, issued to trigger the action,

can not be sent before the �rst one has succeeded. Under those circumstances, a

management application must delay the second pdu until it is certain that the packets

carrying the �rst request no longer exist in the network [Rose, 1994]. This requires

the manager to wait for the expiration of the time-to-live �eld of the ip datagrams

used for the �rst SetRequest.

5.4.1 mcva Supports Atomic mib Actions

An mcva agent can support atomic actions with parameters. Let us consider

an example of an action to con�gure atm connections. An atm Virtual Connection

(VC) is characterized by a tra�c pattern, its Quality of Service (QoS), and its topol-

ogy. The establishment of a VC consists of reserving appropriate Virtual Links (VLs),

characterizing the tra�c on the VLs, cross-connecting the VLs in Intermediate Sys-

tems (ISs), and associating the VLs with user applications. The de�nitions of atm

mib objects are given in [M.Ahmed and K.Tesink, 1994]. An elaborate procedure that

uses the atm mib to con�gure virtual connections (VCs) is described in [Tesink and

Brunner, 1994]. The procedure involves the steps of the management script detailed

in Figure 5.17 below.

The steps in the management script involve retrieving and setting several mib

objects and require careful error checking at each step. Micro-managing the steps

of the procedure from an noc host requires several snmp exchanges over udp. This

exchange exposes the management procedure to race conditions with other managers.

Furthermore, recall that udp is an unreliable transport protocol, which can lose,

duplicate or deliver the packets out of order.

A better alternative is to de�ne an mib action, associated with the corre-

sponding management procedure. This procedure can perform all the steps at the

mcva which is adjacent to the atm switch and the respective hosts. Such a pro-
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Retrieve interface VC constraints from atmInterfaceConfTable.

Create a VL entry in the atmVclTable.

If successful

increment the values of Vpcs and Vccs in for the interface.

Create a row in atmTrafficDescrParamTable and

initialize its columnar objects.

Refer the atm[Vpl|Vcl][Receive|Transmit]TrafficDescrIndex

in the atm[Vpl|Vcl]Table to the corresponding

atmTrafficDescrParamTable rows.

Activate the VLs at each host and the IS.

Obtain a unique cross-connect index from atm[Vp|Vc]CrossConnectIndexNext.

Connect the VCLs by creating a row in atmVcCrossConnectTable.

If successful

fill atmVcCrossConnectIndex in the atmVclTable

activate the cross-connected VLs.

Figure 5.17: Script for Con�guring atm Connections.

cedure could be a implemented as a delegated agent to the corresponding mcva.

The delegated procedure is then assigned a triggering object in the v-mib, say

vatmMbdActionConfigureVC1. The de�nition of an mib action view that could be

used to invoke this procedure in vdl is given in Figure 5.18.

CREATE MIBACTION vatmConfigureVC

ACTION vatmMbdActionConfigureVC1

IID vatmConfigureVCActionID

INPUT vatmIfIndex, vatmVclvpi, vatmVclVci,

vatmTrafficDescrType, vatmTrafficDescrParam1

OUTPUT vatmVcCrossConnectIndex

Figure 5.18: vdl Speci�cation for Action that con�gures atm Connections.

After the action script and its interface de�nition have been delegated to the

mcva agent, a manager may invoke the action. An action is initiated by a man-

ager retrieving the call counter from the v-mib. Every time a manager retrieves the

viewAtomicCallCounter, its value is incremented by the mcva. To reduce the pos-

sibility of collisions, the mcva may record an identi�er of the manager to insure that

the same one will execute the action. Thus, unless two managers actively cooperate

to collide by sharing the values of viewAtomicCallCounter, this object assures no

conicts.
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To perform the action, a manager must set all the input parameters of a newly

created conceptual row. In our example, the table of calls is vatmConfigureVC,

and the parameters that must be set are vatmConfigureVCActionID, vatmIfIndex,

vatmVclvpi, vatmVclVci, vatmTrafficDescrType, and vatmTrafficDescrParam1.

The value of vatmConfigureVCActionID must be a valid call counter value retrieved

from viewAtomicCallCounter.

When such a SetRequest is received, mcva will allocate a new call-frame row

indexed by the call counter, and invoke the action with those parameters. While

the action is in progress, the columnar value action-state will have the value

in-progress. Upon completion of the action, the values of the output paramenters

of the row are initialized, and action-state will have the value completed. At this

time a response is sent to the manager that invoked the action. The manager will

then use a GetRequest to retrieve the output parameters.

The semantics of the atomicity desired among concurrent actions can be explic-

itly encapsulated in the delegated program that implements the action. For example,

the action may specify that only one instance of this type can execute concurrently in

the mcva, or that all actions can execute concurrently, or prescribe mutual-exclusion

zones, semaphores, or other concurrency control mechanisms.

5.5 Using MbD to Implement MIB Computations

snmpmanagement applications need to bridge the gap between the data model

rigidly de�ned in the mib structures and the data model required by the application

itself. Implementing this mapping complicates both the development and the perfor-

mance of snmp applications. Indeed, the lack of an appropriate external data model

is one of the reasons for the dearth of applications that provide more functionality

than simple browsing of mib values.

5.5.1 Performance Considerations

The v-mib extensions implement e�cient computations that can deliver the

required information to management applications via snmp. It is more e�cient to

provide managers with access to computed mib views than to have them continuously

poll for the original prede�ned objects. snmp \fundamentalists" may claim that the

mcva extensions will probably require a lot of computational power on the managed

element. The mcva functionality is organized in a multithreaded environment, e.g.,

an mbd-server. Thus, it can be con�gured to execute only the required computations,

according to the host device computational abilities. Views can actually save host

resources which are spent in polling and creating external-level views by managers.

The mcva is not intended to execute in a resource poor environment which cannot

a�ord or may not require this level of manageability. Devices which can barely a�ord

a traditional snmp agent will continue to support only the basic snmp functionality,

and mcva agents may be able to proxy for them.



153

The response time for an snmp query may be signi�cantly di�erent (some-

times faster, sometimes slower) for view-objects than for the original mib values. For

example, an snmp query of a standard mib object may require the snmp-agent to

perform a slow proxy operation to a remote agent. A similar query to a derived mib

will be answered much faster if the derived object has been computed in an earlier

snapshot. On the other hand, a view-object may require extensive computing, e.g.,

table joins, thus having signi�cantly slower response time than a comparable snmp

query that only retrieves the original tables.

Views and Actions

Views and actions are applied in di�erent ways to deal with the shortcomings

and de�ciencies of the snmp paradigm, while maintaining interoperability with snmp-

based applications. Applying these extensions does not require making changes to the

core snmp standards, i.e., the protocol and the smi. Therefore, any snmp manager

application can access and take advantage of the computed mib extensions. Pro-

viding derived objects such as mib views at the \agent" side is somewhat contrary

to the minimalist computational paradigm expected for snmp-agents. In this \sim-

ple" paradigm, device resources are considered to be at a premium, and therefore all

mib objects are primitive and derivations should occur at the management station

side. The mcva is tightly integrated with the corresponding snmp-agent inside an

mbd-server.

5.5.2 Related Work

Some related work has focused on a theoretical modelling of the semantics and

behavior of managed networks. For example, two speci�cation techniques that com-

bine object-oriented and relation algebraic methods to model mib data are presented

in [Bapat, 1993; Benz and Leischner, 1993]. The �rst paper proposes the use of virtual

attributes, which are dynamically computed from other attributes to enforce access

control. The second paper hints at future extensions of their modeling technique

which would include views to �lter certain objects. The role and applicability of for-

mal model-based techniques for diagnosis of dynamic systems is analyzed in [Riese,

1993].

The (suspended) draft snmpv2 framework de�nes \mib views" as subsets of the

managed objects held by the managed entity. These subsets are de�ned by inclusion

and exclusion of subtree families via bit-masks, providing a simple projection of a

subset of the mib tree. The purpose of these \mib views" is to de�ne a context, that

is, a collection of managed objects that can be accessed locally by an snmpv2 entity.

snmpv2 provides a "context" mechanism to support a projection view of an mib.

A party may be authorized to access a subset of the mib. mib Views extend this

mechanism to support not only projections but also computations over mib data.

An alternative vdl, which also requires mbd support was proposed by [Arai and

Yemini, 1995]. Their vdl extends the mib smi to support views. The smi is a subset
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viewAtmIfTable VIEW-TYPE vIfSpeed VIEW-TYPE

SYNTAX SEQUENCE OF SYNTAX Gauge

vAtmIfTableEntry MAX-ACCESS read-only

MAX-ACCESS not-accessible STATUS current

STATUS current DESCRIPTION "Interface speed"

DESCRIPTION "ATM Interface Table" COMPUTED-BY func_vIfSpeed

INDEX {vIfIndex} ::= {vAtmIfTableEntry 2}

::= {view 1}

func_vIfSpeed VIEW-FUNCTION

vAtmIfTableEntry VIEW-TYPE SELECT ifSpeed[SELF-INDEX]

SYNTAX VAtmIfTableEntry WHERE ifType[SELF-INDEX] = 37

MAX-ACCESS not-accessible

STATUS current vMaxVpcs VIEW-TYPE

DESCRIPTION "Conceptual row" SYNTAX INTEGER

::= {viewAtmIfTable 1} MAX-ACCESS read-write

STATUS current

VAtmIfTableEntry ::= SEQUENCE { DESCRIPTION "Max. number of VPCs."

vIfIndex INTEGER, COMPUTED-BY func_vMaxVpcs

vIfSpeed Gauge, ::= {vAtmIfTableEntry 3}

vMaxVpcs INTEGER,

vMaxVccs INTEGER func_vMaxVpcs VIEW-FUNCTION

} SELECT atmInterfaceMaxVpcs[SELF-INDEX]

WHERE ifType[SELF-INDEX] = 37

vIfIndex VIEW-TYPE

SYNTAX INTEGER vMaxVccs VIEW-TYPE

MAX-ACCESS read-only SYNTAX INTEGER

STATUS current MAX-ACCESS read-write

DESCRIPTION "ifIndex from ifTable" STATUS current

COMPUTED-BY func_vIfIndex COMPUTED-BY func_vMaxVccs

::= {vAtmIfTableEntry 1} ::= {vAtmIfTableEntry 4}

func_vIfIndex VIEW-FUNCTION func_vMaxVccs VIEW-FUNCTION

SELECT ifIndex[SELF-INDEX] SELECT atmInterfaceMaxVccs[SELF-INDEX]

WHERE ifType[SELF-INDEX] = 37 WHERE ifType[SELF-INDEX] = 37

Figure 5.19: Arai's example of vdl statement to join tables.

of asn.1, a data de�nition language used to de�ne the types and representations of

the contents of snmp pdus. Except for comments written in English, smi does not

have facilities to precisely de�ne how values are computed. Extending the smi to

support views requires merging the sql select-from-where constructs in the asn.1

notation. This results in very long and detailed speci�cations of mib views.

Consider, for instance, the simple example given in Figure 5.10, which only

takes �ve lines in our vdl. The same example is given in Figure 5.19 using smi

extensions following the notation presented in [Arai and Yemini, 1995]. Notice also

that the smi is a well established standard at the core of snmp. An extension or

revision of such standard must also overcome many non-technical obstacles, as the

experience of snmpv2 has shown. Our approach, in contrast, does not require any

changes to the smi. The vdl translator will read the view de�nitions and generate

correct mib de�nitions to be compiled by any standard mib compiler.

5.6 Conclusions

The lack of an appropriate external data model is one of the reasons for the

dearth of applications that provide more functionality than simple browsing of mib

values. This chapter described the design of an mib Computations System (mcs) that

supports the dynamic de�nition of external data models for mibs. The mcs consists
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of (1) a View De�nition Language to specify mib external views and (2) snmp-agent

extensions that implement them. Collections of vdl views de�ne a new Virtual mib,

v-mib, that can be queried via snmp.

The v-mib variables are computed via instrumentations over an mib, per-

formed by a special mbd-server. v-mib tables which contain correlated data, to gen-

erate atomic snapshots of mib data, establish access control mechanisms, select data

which meet a �ltering condition, and execute atomic actions. This is all achieved by

a simple set of constructs which a management engineer can use without being pro�-

cient on the smi. All the mib structures and their semantic routines are automatically

generated by the vdl translator, and executed by the mcva. These computations

can be accessed via snmp.
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6

Summary and Conclusions

This chapter summarizes the work presented and reviews the main contribu-

tions of this dissertation. The principal theme of this dissertation is to apply elastic

processing technologies to support distributed system management.

Elastic Processing

The traditional Client/Server interaction model involves transfer of data and/or

commands among statically located processes. Data and commands form the mobile

parts of a computation while the processes are static. This model enforces a rigid

association of functionality with server processes that often leads to a concentration

and centralization of application logic. Such centralization results in ine�cient and

intrinsically unreliable distributed systems. There is a growing number of network

computing scenarios which cannot be e�ectively addressed by such static interaction

paradigms.

As computing processors become faster and network bandwidth increases, net-

work interaction delays become the most critical performance problem for distributed

applications. Rigid Client/Server distributed computing does not scale well to envi-

ronments where network delays are relatively long compared with their local com-

putations. Elasticity provides an e�ective way to overcome these delays, by taking

advantage of cpu cycles and network bandwidth to move computations closer to the

resources that they need to access.

Elastic processes support remote delegation of language-independent agents,

a new construct for interaction between distributed applications. Elastic processing

consists of two components: (1) a Remote Delegation Service (rds) to dispatch an

agent to a remote elastic process, invoke it as a thread of the process, and control its

execution; (2) An elastic process structure to support dynamic delegation, linking,

and remote control of agents. Elasticity is useful for many types of applications.

Common characteristics of such applications are that (1) they are long-lived, (2) they

execute over distributed heterogeneous environments, (3) they must adapt to changes

in the environment, (4) they have real-time constraints, and (5) they must execute

over hosts with insu�cient computing resources or over low bandwidth networks.
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Management by Delegation

Network and system management present a broad range of technical challenges.

Current network management systems pursue a platform-centered paradigm which

is unscalable, performs poorly, exposes the semantic heterogeneity of devices, and

reects obsolete performance tradeo�s. Current standards de�ne the observation and

collection of mib data independently of its use. Since the need for mib data cannot

be predicted, many observations are collected and stored but never used.

mbd supports the dynamic distribution and automation of management respon-

sibilities to networked devices. Thus it addresses many of the fundamental limitations

of platform-centric management systems. mbd provides a simple yet powerful scheme

to dynamically compose management applications using delegated agents. Designers

and vendors of network devices can provide prede�ned programs that encapsulate

network management expertise. Network managers use these programs as delegated

management agents to compose distributed multi-process applications which they can

con�gure and control.

mbd-server allows the devices to perform an open-ended set of management

programs in close proximity to the managed devices. Management applications gain

much faster response time to management events like faults. mbd-server executes these

functions independently of the delegator's execution, unless coordination is required.

Each delegated agent can be designed and coded as part of a speci�c management

scheme. This can be done much later than the device mib design and deployment,

and can be tailored to the speci�c requirements of each network installation. mbd

is an e�ective tool to balance the computational requirements of management appli-

cations and respond to the vicissitudes of their network environments. Management

applications can use delegated agents to quickly react to ephemeral conditions like

network load and con�guration changes like device replacements.

Compressing Management Data

We introduced a formal notation to describe the behaviors of managed enti-

ties and their observations by mibs and by management applications. Management

applications de�ne composite observation operators to reach management decisions.

Current network management paradigms introduce many problems that prevent the

e�ective computation of such operators. They do not support the temporal distribu-

tion and spatial decentralization required to compute real-time management functions

e�ectively. The dissertation introduced a framework for compressing real-time data

and making management decisions via delegated health functions. The de�nition of

what constitutes a healthy network cannot be standardized or �xed for all networks,

since it is installation and time dependent. mbd permits applications to con�gure

observation processes to exibly monitor information of their interests.

We de�ned index functions to compress real-time management observations

at the location of the managed entities. We implemented and demonstrated an mbd

application that computes a health index of a network. This application performs
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proactive diagnoses of failures and performs corrective actions in real-time. Manage-

ment decisions, such as to temporarily disconnect a device, are executed e�ciently

without the need for remote noc intervention. Real-time operational data is e�ec-

tively compressed at the mbd-server, reducing the management data overhead on the

network. The mbd environment allowed network managers to tailor and customize

the health application during execution.

mib Views

Management applications need to compute useful information from raw data

collected in mibs. The lack of an external-level data model repository results in

excessive and redundant retrievals and recomputations. It is also one of the reasons for

the dearth of management applications that provide more functionality than simple

browsing of mib values.

mib views provide a mechanism to perform such computations at the devices

while using standard data access protocols (e.g., snmp) to access the results of the

computations. We designed an mbd-server that provides snmp managed elements a

framework generate external-level management information. Management engineers

can use the vdl language to specify mib views, which are implemented by the mbd-

server. The vdl language allows management engineers to create new, \virtual"

mib tables which contain correlated data, to generate atomic snapshots of mib data,

establish access control mechanisms, select data which meet a �ltering condition, and

execute atomic actions. These mib extensions implement e�cient computations that

can deliver the required information to management applications via snmp.
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Appendix A

Network Management Standards and

Models

A.1 Background

Most organizations depend on networked systems to support their critical informa-

tion functions. Hence they are exposed to the inherent risks associated with operating such

systems. For example, their information systems are vulnerable to network failures and

security compromises. These problems can have severe costs for many types of businesses,

and in particular �nancial institutions. From an organization's perspective, failures have

many di�erent manifestations. As Arno Penzias states it, \If a customer can't use it, it

might as well be broken{ it might as well not exist!" [Bernstein and Yuhas, 1995]. Net-

work failures can result in signi�cant physical harm to people. For example, failures in

the London Ambulance Service dispatching network resulted in almost twenty deaths as a

result of ambulance delays of up to three hours [Bernstein, 1993]. As this example shows,

an e�ective management system that ensures fault-free, e�cient and secure operations is,

literally, a vital need.

Modern computing technologies bring huge bene�ts to society. Realizing these ben-

e�ts requires more than simply deploying new hardware and software products. Because

of our dependency on the proper operations of information systems, we must ensure that

these assets are properly managed. Failure to allocate su�cient resources for network and

system management will limit the bene�ts and raise the costs of these newer technologies.

An e�ective management framework that enables the proper utilization of these resources

is, therefore, of paramount importance.

The main goal of network management is to maintain the communication network

operating e�ciently at all times. Network administrators and operators that manage large

distributed systems need automated tools to maintain seemly operating networks. An

integrated management environment must, therefore, enable network operators to make

timely management decisions. To be e�ective, network managers must �rst overcome the

volume and complexity of management information that characterize large heterogeneous

distributed systems. To achieve this, they must use automated management tools to �lter

and sort the management information that they need from a sea of management data.
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Several emerging trends contribute to make networked systems management complex

and technically challenging. First, the explosive growth of the number of devices that are

attached to networks. Second, the heterogeneity of these devices, in terms of brands and

types. Third, the increased functionality and complexity of newer devices. Finally, the

fact that organizations are moving away from centralized, mainframe based \glass-house"

environments and towards departmental, distributed computing environments.

Distributed system management presents a broad range of non-trivial technical chal-

lenges, and their research is at an early stage. Many of the fundamental technical problems

involved in accomplishing manageability are not fully understood. Indeed, \It is not clear

that we know what data should be collected, how to analyze it when we get it, or how to

structure our collection systems" [Stine, 1990]. For example, typical diagnostic problems

arising in large-scale heterogeneous systems include [Dupuy et al., 1989]:

� Faults that are unobservable, either because of systems deadlocks or because of lack

of device instrumentation.

� Partial observations that provide insu�cient data to pinpoint a problem.

� Uncertainty in the observations, sometimes due to multiple potential causes.

� Too many related observations obscuring the real problem.

� Local recovery procedures that may destroy evidence.

Many management functions presently require manual monitoring and reactive anal-

ysis by expert operations personnel. Examples of such tasks include inventory control of

installed equipment and software, discovery of intrusion attempts, and handling of device

breakdowns. A labor-intensive management paradigm exposes enterprises to many opera-

tions failures. It has also caused management costs to consume an increasing and dominant

share
1
of information systems budgets. For example, a major software developer reported

that maintenance and operations account for as much as 90% of the cost of business com-

puting [Markov, 1993]. The total costs associated with the operation and management of

information networks for the USA economy in 1994 has been estimated at over $200 billion

dollars [Meleis et al., 1994].

Networks were not designed to be managed

Unfortunately, most networks and devices were not designed with integrated man-

agement facilities. In the early days of the Internet, for instance, management schemes

were based on personal cooperation among the researchers who built and used the Internet

[Comer, 1991]. Before 1990, there were few generic network management tools available,

and they provided very basic functions. For instance, operators used traceroute [Jacob-

son, 1988] to track the route that ip packets follow or to �nd a \miscreant" gateway that is

discarding some packets. Some private-vendor networks supported more sophisticated but

proprietary management tools, e.g., ibm's NETVIEW for SNA networks. An overview of

such systems is presented in [Terplan, 1987].

1The Gartner Group estimates are 65-90%.



169

As private and public networks grew in size and complexity, more formal methodolo-

gies and automated methods became necessary. Most useful management tools were vendor-

speci�c and supported only a certain class of devices. Network operators became unable to

handle non-amenable problems in real-time, for an ever growing melange of devices. This

situation created a demand for integrated management solutions that are vendor-neutral

and can support any device. Standards organizations ameliorated this situation by provid-

ing network management frameworks such as the ietf's snmp [Case et al., 1990], and the

iso's cmip [ISO, 1990a].

A.2 Network and System Management Functions

Network managers need assistance for (a) controlling and securing assets connected

to the network, and (b) improving the overall quality of information services. Managers must

control who can access network resources, and provide satisfactory service to their users. To

achieve these high-level goals, management systems must implement speci�c management

functions. These management functions are often divided into �ve major areas [ISO, 1989]:

fault, accounting, con�guration, performance, and security.

1. Fault management functions detect and correct abnormal behaviors. For example,

they handle device breakdowns (e.g., �le server failures) and network cleavages (e.g.,

connectivity lost due to repeater or cable failures).

2. Accounting management functions collect and process resource consumption data. For

instance, they can compute the billing cost of using a videoconferencing application.

3. Con�guration management functions detect and control the state of the network re-

sources. For instance, they can track the use of shared software licenses by di�erent

users.

4. Performance management functions evaluate the e�ectiveness of communications. For

instance, they monitor response time delays and uneven packet tra�c distributions.

5. Security management functions monitor and control access to resources, e.g., unau-

thorized reading of database records.

The development of management protocol standards has served as the key driv-

ing force of the network management �eld since the late 1980s. The main standards are

the ietf's Simple Network Management Protocol2, snmp [Case et al., 1990], and the osi's

Common Management Information Protocol, cmip [ISO, 1990a]. Both standards follow a

platform-centered paradigm, and provide a database model to access device data and in-

strumentation. The original goal of these standard e�orts was to enable the implementation

of enterprise-wide management across heterogeneous devices. As described in more detail

in the following sections, the platform-centered paradigm subsumed by the standards has

serious limitations.

Standardization e�orts in both osi and the ietf have focused primarily on the

management protocol and the structure of management information. A comparison of

2A new draft version, snmpv2 [Case et al., 1993], has been under development for some time,

but its working group was suspended on September 1995.
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several network management system products based on these standards is given in [Meyer

et al., 1993]. The following sections briey outline snmp and cmip. We provide a more

detailed presentation and critical analysis of snmp, since we will use snmp for illustration

purposes as a representative protocol. Our results, however, are equally valid for the osi

management framework and its protocol cmip. Indeed, their limitations result from their

common management paradigm rather than from speci�c design features of each standard.

Di�erent administrative domains have di�erent requirements and need di�erent man-

agement strategies [Chu, 1993]. Thus, they may require di�erent technologies to organize

and access their management information e�ciently. Given the existing plethora of man-

ageable resources, the hodgepodge of administrative approaches, inconsistent tools, and

inadequate facilities [Autrata, 1991], managing a distributed system is a di�cult task. For

example, some installations may need expert system databases and technologies (e.g., [Ra-

hali and Gaiti, 1991]). Other organizations may use model-based diagnosis techniques (e.g.,

[Riese, 1993]), and so forth.

The network management community has been seeking a single unifying scheme,

de�ned by a standard protocol and mibs. Such an approach is, obviously, not a panacea

for all the di�culties of managing a distributed system. Thus, it is preferable to develop

a framework that admits many di�erent management protocols and mib types. snmp in

particular, is inadequate for managing complex devices. Still, snmp is so ubiquitous and

pervasive that it will continue to play a critical role for a long time. Similarly, the telecom-

munications industry will continue to use cmip for their own reasons. Thus, there is a need

for a management paradigm that can admit and support several management protocols

concurrently.

A.3 Critical Evaluation of snmp

To increase the ubiquity of network management agents, a minimalist approach \ax-

iom" has driven the design of snmp: \The impact of adding network management to man-

aged nodes must be minimal, reecting a lowest common denominator" [Rose, 1991a]. The

design of snmp is indeed simple, making it inexpensive for device vendors to implement
3
.

This simplicity resulted in its rapid deployment across a wide variety of devices. Thus it

became the primary method to retrieve management data from just about any device at-

tached to an ip network. The snmp paradigm has been successful for two primary reasons.

First, most of the early network management applications followed a centralized paradigm

which required a more global, or distributed knowledge that is not available locally. Second,

the networked devices where agents need to execute did not have the su�cient computing

resources to manage themselves.

Adherence to the above axiom resulted in network management systems and appli-

cations that are platform-centric, and do not provide all the capabilities needed to properly

manage a network. For instance, later sections show that snmp does not provide appro-

priate mechanisms to proactively respond to network failures in real-time. With the rapid

3Note, however, that the implementation of the snmp protocol is large compared with other

protocols of the TCP/IP suite. An analysis of implementations reports that \snmp accounts for

nearly as much code [24.1%] as TCP [25.9%] even though it provides only a simple service." [Comer

and Stevens, 1991].
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growth in the size of networks, scalability and performance became a growing concern.

Presently and in the future, the embedded resources that can be allocated to management

far exceed those assumed by the snmp model. For example, network hubs come along with

risc microprocessors. Given such a powerful embedded processor committed to support

management, it is wasteful to limit its use just to move data, when it can also be used

to process applications. Devices that are capable of performing sophisticated management

functions locally can take computing pressure o� the centralized platforms, and reduce the

network overhead of management messages. mbd allows management applications to take

advantage of these resources.

snmp de�ciencies

snmp has many de�ciencies. For example, snmp polling introduces signi�cant delays

in retrieving management data to the platform. These delays are due to: (1) transient

conditions, e.g., network contention or congestion, (2) con�guration problems, e.g., the

routing distance between the devices and the platform, and (3) the protocol design, e.g.,

the need for asn.1 parsing of management pdus in both communication endpoints (device

and platform). High frequency polling introduces large bandwidth overhead. Slow polling

will miss transient spikes (errors, load, etc) as it will average it over long periods of time.

snmp-agent implementations introduce big timing errors in the observations of real

devices, which produce outdated, and potentially erroneous, data in the agent's mibs. Typ-

ically, mib tables change while a management application is retrieving or examining them.

Inaccuracies like these often lead to erroneous computations. To some extent, network

operators can not trust the complete accuracy of their measurement instruments.

The following list outlines several of the problems associated with snmp implemen-

tations (see [Ben-Artzi et al., 1990] for a more detailed analysis). Our thesis is that mbd

provides mechanisms that address these problems.

� snmp uses the network to transmit information about network measurements. Thus,

it introduces an intrinsic disturbance i.e., a \probe" or Heisenberg e�ect.

� When a device is loaded, its snmp-agent is scheduled with relatively lower priority,

and thus queries to it will often be delayed.

� There is a large amount of relevant data for management purposes which is not

available in any snmp mib. For instance, relevant data can be obtained via local

instrumentation tools like netstat.

� snmp is not well suited for retrieving large volumes of data, particularly large tables;

We describe this problem in detail in Chapter 5.

� Event report traps are unacknowledged and an unreliable protocol (UDP) is used to

deliver them. Thus, an agent cannot be sure that a trap has reached its destination;

� snmp provides only trivial authentication via community strings, which makes it very

vulnerable to attacks
4
;

4Because of this, many implementations do not support the Set operator, limiting snmp to

monitoring only.



172

� snmp does not directly support imperative commands with parameters; Section 5.4

describes this problem in detail.

� The mib model does not support queries based on object values or types. Thus,

applications can not �lter mib data at its source, and must retrieve large amounts of

mib data. This problem is elaborated on Section 5.3.1.

� Many implementations of snmp-agents are erroneous and return wrong data. Ben

Artzi describes controlled experiments which demonstrate signi�cant inaccuracies in

several commercial snmp-agents [Ben-Artzi et al., 1990].

A.4 Computations on MIBs

Large networks have many types of devices with di�erent mibs. The semantic het-

erogeneity of these mibs complicates the development of management applications. Stan-

dard management protocols, like snmp, unify only the syntax of managed data, not their

semantics. For example, an mib variable can be de�ned as an integer counter, which is

documented as counting ethernet frames. However, the actual de�nition of how the counter

observes frames is left for the implementor of the agent. Management software can do little

with this data in the absence of a uniform semantic model for its interpretation. mibs allow

substantial semantic variations and di�erences in the implementation-speci�c behaviors of

similar devices. The method that implements each mib variable can be implemented in sub-

stantially di�erent ways. For instance, routers from di�erent vendors are often so di�erent

that manager applications must use vendor-speci�c private mibs to handle them.

The manner in which devices are operated and controlled is often inseparable from

their competitive advantages in the marketplace. Device vendors are interested in encour-

aging the growth of the diversity and exibility of their devices, rather than subjecting

them to a uniform \straight-jacket". Furthermore, because of the rapid pace of innovation

in networking technologies, standard bodies are unable to make workable mib de�nitions

on time. Thus, vendors must resort to using di�erent private mibs. Private mibs contain

diverse and useful management features. While the data access mechanisms are �xed and

standardized by the management protocols, the contents of the mibs keep growing as new

hardware is introduced. For example, Synoptics [Synoptics, 1990] de�nes private extensions

in a separate mib sub-tree under:

iso(1).org(3).dod(6).internet(1).private(4).enterprises(1).synoptics(45).

This subtree includes sections for each series of devices. The System 3000 Chassis, for

instance, contains 87 objects. For example, s3ChassisPsStatus de�nes the chassis

power supply status.

Much of the really relevant management data is found at that vendor-speci�c

level. Indeed, it has been observed by many application designers that most useful

information is speci�c to the implementation of a single device and describes its

internals. For example, to �nd out why a device queue is overowing it may be

necessary to look into its bu�er allocation scheme. Proprietary tools can make use of

this private information. For instance, a management tool can correlate the actual

semantics of some mib variables with the non-standard methods to manipulate them.
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Thus, a management application may change the number of bu�ers allocated to

respond to a queue overow.

Unfortunately, many mibs are poorly documented. For instance, they typically

do not describe how a given variable is calculated and how it is to be used. mibs

provide data, but they don't tell the management station what kind of problems can

be solved with it. Furthermore, mib speci�cations rarely assist the implementors of

management applications on how to use this data in an intelligent way.

The semantic heterogeneity of managed data complicates the development of

generic management software. In the absence of such software, platform-centered

management applications are reduced to core-dumping cryptic device data on op-

erators' screens, i.e., \mib browsers". Indeed, \most network management systems

are passive and o�er little more than interfaces to raw or partly aggregated and/or

correlated data in mibs" [Meandzija et al., 1991]. mib browsing is not an adequate

model for managing networks, as there are very few adept operators able to decipher

and interpret mib contents. Typical end-users cannot interpret mib data, and their

organizations often cannot a�ord the costs of applications development and support.

Given the wide variety of networked devices, and their large number of con�guration

options, there is an explosion of management information that needs to be handled.

To understand and take advantage of the large amount of mib data, it is sometimes

necessary to bring together several experts, familiar with the various devices to iden-

tify a single problem.

Delegated agents may be designed to handle the speci�c operational envi-

ronment and distinct features of speci�c resources. They require neither a uniform

semantic model of device data nor adaptation to di�erent platform environments.

Thus, mbd simpli�es the problems of data heterogeneity that present barriers to the

development of management applications. A device vendor can develop management

application programs maintaining minimal components that can be easily ported.

The exposure of these programs to heterogeneity can be handled via carefully de�ned

minimal ocp interfaces. Contrast this with the task of developing platform appli-

cations (e.g., for fault management) that can handle the semantic heterogeneity of

di�erent devices.

A.5 cmip

The osi management standards de�ne an object-oriented interaction model.

The de�nition of a managed object class is speci�ed by a template and consists of

attributes, operations that can be applied to the object, behavior exhibited by the

object in response to operations, and noti�cations that can be emitted by the object.

The de�nition of a managed object is �xed at design time, i.e., it cannot change

during execution. The exchange of management information between managers and

agents is de�ned by the CMI-Service (cmis), and its protocol (cmip).

cmis provides management-operation services that include M-GET to retrieve

data, M-SET to modify data, M-ACTION to request the execution of an action, M-CREATE
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(M-DELETE) to request the creation (deletion) of an instance of a managed object,

and M-CANCEL-GET to cancel an outstanding M-GET request. Agents may report events

about managed objects using M-EVENT-REPORT. In addition, cmis provides scoping,

�ltering, and synchronization tools to select the objects which are subject to a man-

agement operation. Scoping is the identi�cation of objects to which a �lter is to be

applied. Filtering consists of Boolean expressions about the presence or values of

attributes in an object. If several objects are selected by a given scope and �lter, two

types of synchronization may be requested: atomic or best-e�ort.

The cmip framework provides a much richer functionality than snmp. How-

ever, because of the overall complexity and size of cmip5 many claim that this is \a

case of the cure's being worse than the disease" [Stallings, 1993]. In practice, cmip has

received little attention outside the telecommunications industry. A detailed analysis

of the osi network management model is given in [Yemini, 1993].

5\cmip is really an abbreviation for the (overly) Complex Management Information Protocol"
[Rose, 1991b].
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Appendix B

Glossary of Acronyms

API Application Programming Interface

A-RPC Asynchronous RPC

ASN.1 Abstract Syntax Notation 1

ATM Asynchronous Transfer Mode

CMIP Common Management Information

Protocol

CMIS Common Management Information

Service

DDL Data De�nition Language

DP Delegated Program (agent code)

DPI Delegated Program Instance

DBM Delegation Backplane Middleware

FDC Full-Process dpi Controller

GHO Generic Health Object

IETF Internet Engineering Task Force

ILMI Interim Local Management Interface

(for ATM)

IPC Inter Process Communication

MbD Management By Delegation

MD5 Message Digest 5

MIB Management Information Base

MCS MIB Computations System

MCVA MIB Computations of Views Agent

NMS Network Management Station

NOC Network Operating Center

OCP Observation and Control Point

PDA Personal Digital Assistant

PDU Protocol Data Unit

PVN Private Virtual Network

RDP Remote Delegation Protocol

RDS Remote Delegation Service

RPC Remote Procedure Call

RMON Remote Monitoring (an MIB)

SMI Structure of Management Information

SNMP Simple Network Management Pro-

tocol

SOS Smarts Operating Server

URL Universal Resource Locator

VDL View De�nition Language

VMIB Virtual MIB


